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Abstract

This paper examines the deployment of the DNS
Security Extensions (DNSSEC), which adds crypto-
graphic protection to DNS, one of the core compo-
nents in the Internet infrastructure. We analyze the
data collected from the initial DNSSEC deployment
which started over 2 years ago, and identify three
critical metrics to gauge the deployment: availabil-
ity, verifiability, and validity. Our results provide
the first comprehensive look at DNSSEC’s deploy-
ment and reveal a number of challenges that were
not anticipated in the design but have become ev-
ident in the deployment. First, obstacles such as
middle-boxes (firewalls, NATs, etc.) that exist in to-
day’s Internet infrastructure have proven to be prob-
lematic and have resulted in unforeseen availability
problems. Second, the public-key delegation system
of DNSSEC has not evolved as it was hoped and it
currently leaves over 97% of DNSSEC zones isolated
and unverifiable, unless some external key authenti-
cation mechanism is added. Furthermore, our results
show that cryptographic verification is not equivalent
to validation; a piece of verified data can still contain
the wrong value. Finally, our results demonstrate the
essential role of monitoring and measurement in the
DNSSEC deployment. We believe that the observa-
tions and lessons from the DNSSEC deployment can
provide insights into measuring future Internet-scale
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cryptographic systems.

1 Introduction

It is widely recognized that security is a fundamen-
tal challenge facing the Internet today, and crypto-
graphic technologies are generally viewed as a power-
ful tool-set for addressing security challenges. Over
the past several years, there have been a number of ef-
forts to retrofit existing protocols with cryptographic
protection [15, 17, 16, 6, 10, 19]. One clear lesson
that has emerged from these efforts is that adding
cryptographic protection to existing systems tends to
be difficult. This is especially true for Internet-scale
systems. Internet-scale systems are large in size as
measured by the number of their components, which
belong to a large number of independent adminis-
trative authorities without any central control. Yet
deploying a cryptographic protection in an Internet-
scale system means that the mechanism needs to be
deployed across the entire Internet and can be used
by all desired parties in a cohesive manner.

In this paper we examine the DNS Security Exten-
sions (DNSSEC)[15, 17, 16]. The DNSSEC protocol
set is considered mature and its global deployment
efforts started a few years ago. Our SecSpider moni-
toring project[3] has been tracking the DNSSEC de-
ployment since shortly after the rollout began. Our
public site tracks the number of secured DNS zones
as viewed from diverse locations around the globe. It
allows one to determine whether a particular zone has
turned on DNSSEC and also tracks the evolution of
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zone specific operational decisions, such as the choice
of public keys and signature lifetimes. Live data has
been available for a few years and historical data dat-
ing back to the first few months of DNSSEC deploy-
ment is also available.

To quantify both the effectiveness of cryptographic
protection that early DNSSEC adopters may gain
and the obstacle in DNSSEC deployment, we ana-
lyze the collected DNSSEC monitoring data using
three measurement metrics: availability, verifiability,
and validity. Our measurement and analysis show
that there are a number of challenges that were not
anticipated in the design but have become evident
in the deployment. First, middleboxes, such as fire-
walls and NATs, that exist in today’s Internet in-
frastructure have proven to be obstacles in DNSSEC
rollout and have resulted in unforeseen availability
problems. Second, the public-key delegation sys-
tem in the DNSSEC design has not evolved as it
was hoped and it currently leaves more than 97%
of DNSSEC-enabled zones isolated and unverifiable,
unless some external key authentication mechanism
is added. Third, our results show that cryptographic
protection has its own limitations. That is, crypto-
graphic verification is not equivalent to validation; a
piece of cryptographically verified data can still con-
tain incorrect value.

Our contributions in this paper are three-fold.
First, based on our observations of the current
DNSSEC deployment, we derive three basic metrics
to quantify the effectiveness of DNSSEC’s deploy-
ment. Our earlier measurement results reported in
[12] provided some basic observations including the
number of existing DNSSEC zones, the operational
practice in managing cryptographic deployment, and
the existence of vulnerability to replay attacks; this
paper not only reports more recent measurement
data, but most importantly, the newly defined met-
rics enable us to quantify the observed problems in
a meaningful way. Second, our measurement results
expose previously undocumented open issues in the
DNSSEC deployment. Third, our results demon-
strated the essential role of monitoring and measure-
ment in the DNSSEC deployment. We believe that
the observations and lessons reported in this paper
can provide insights into the challenges in developing

future Internet cryptographic systems.
The remainder of this papers is organized as fol-

lows. Section 2 discusses the general design of
DNSSEC. Next, in Section 3 we describe our basic ap-
proach to monitoring and quantifying the deployment
of DNSSEC. In Section 4 we present the quantitative
results of analyzing DNSSEC. Lastly, we discuss our
findings and conclusions in Section 5.

2 Background

The Domain Name System (DNS) maps hostnames
such as www.ucla.edu to IP addresses and provides
a wide range of other mapping services ranging from
email to geographic location. Virtually every Internet
application relies on looking up certain DNS data. In
this section we introduce a basic set of DNS terminol-
ogy which is used throughout the text, including re-
source records (RRs), resource record sets (RRsets),
and zones, followed by an overview of the DNS Secu-
rity Extensions.

All DNS data is stored in the same data structure
called Resource Records (RRs), and each RR has an
associated name, class, and type. For example, an
IPv4 address for www.ucla.edu is stored in an RR
with name www.ucla.edu, class IN (Internet), and
type A (IPv4 address). A host with several IPv4 ad-
dresses will have several RRs, each with the same
name, class, and type but its own IPv4 address. The
set of all resource records associated with the same
name, class, and type is called an Resource Record
Set (RRset). DNS resolvers query for RRsets. For
example, when a browser queries for 〈www.ucla.edu,
IN, A〉, the reply will be the RRset for www.ucla.edu
with all the IPv4 addresses for that name. Note that
the smallest unit that can be requested in a query
is an RRset, and all DNS actions including crypto-
graphic signatures, discussed later, apply to RRsets
instead of individual RRs.

The DNS is a distributed database organized in a
tree structure. At the top of the tree, the root zone
delegates authority to top level domains like com.,
net., org., and edu.. The zone com. then dele-
gates authority to create google.com., edu. dele-
gates authority to create ucla.edu., and so forth.
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In the resulting DNS tree structure, each node cor-
responds to a zone. Each zone belongs to a single
administrative authority and is served by multiple
authoritative nameservers to provide name resolu-
tion services for all the names in the zone. Every
RRset in the DNS belongs to a specific zone and
stored at the nameservers of that zone. For exam-
ple, the RRset for 〈www.ucla.edu, IN, A〉 belongs
to the ucla.edu zone and stored in the ucla.edu name-
servers; while the RRset for 〈www.colostate.edu,
IN, A〉 belongs to the colostate.edu zone and stored
in the colostate.edu nameservers.

2.1 DNSSEC Overview

Security was not a primary objective when the DNS
was designed in mid 80’s and a number of well known
vulnerabilities have been identified [4, 5]. DNSSEC
provides a cryptographic solution to the problem,
which seems pretty simple and intuitive. To prove
that data in a DNS reply is authentic, each zone cre-
ates public/private key pairs and then uses the pri-
vate portions to sign data. Its public keys are stored
in a new type of RR called DNSKEY, and all the sig-
natures are stored in another new type of RR called
RRSIG. In response to a query, an authoritative server
returns both the requested data and its associated
RRSIG RRset. A resolver that has learned the DNSKEY
of the requested zone can verify the origin authentic-
ity and integrity of the reply data. To resist replay
attacks, each signature carries a definitive expiration
time.

Let Ni define the set of authoritative name servers
for zone zi which are online and reachable. When the
zone is operating correctly, it does not matter which
of the servers in Ni handles a query and the answer
can be cached. However, the design does assume that
the resolver can obtain and authenticate the zone’s
DNSKEY.

In order to authenticate the DNSKEY for a given
zone, say www.ucla.edu, the resolver needs to con-
struct a chain of trust that follows the DNS hierarchy
from a trusted root zone key down to the key of the
zone in question (this is shown in Figure 1). In the
ideal case, the public key of the DNS root zone would
be obtained offline in a secure way and stored at the

com

         foo.com

root
edu

ucla.edu   .
Ta

Ta

Figure 1: Resolvers preconfigure the root zone’s public key as a
trust anchor (T a) and can then trace a “chain of trust” from that
key down the DNSSEC hierarchy to any zone’s key that they have
encountered.

resolver, so that the resolver can use it to authen-
ticate the public key of edu.; the public key of edu.
would then be used to authenticate the public key of
ucla.edu..

There are two challenges in building the chain of
trust. First, a parent zone must encode the authen-
tication of each of its child zone’s public keys in the
DNS. To accomplish this, the parent zone creates and
signs a Delegation Signer (DS) RR that corresponds
to a DNSKEY RR at the child zone, and creates an
authentication link from the parent to child. It is
the child zone’s responsibility to request an update
to the DS RR every time the child’s DNSKEY changes.
Although all the above procedures seem simple and
straightforward, one must keep in mind that they are
performed manually, and people inevitably make er-
rors, especially when handling large zones that have
hundreds or thousands of children zones.

Moreover, the parent and child zones belong to dif-
ferent administrative authorities, each may decide in-
dependently is and when they turn on DNSSEC. This
leads to the second and more problematic challenge.
If the parent zone is not signed, there is no chain
of trust leading to the child zone’s DNSKEY. This or-
phaned key effectively becomes an isolated trust an-
chor for its subtree in the DNS hierarchy. To verify
the data in these isolated DNSSEC zones, one has to
obtain the keys for such isolated trust anchors offline
in a secure manner. DNSSEC resolvers maintain a
set of well-known “trust-anchor” keys (T a) so that
a chain of key sets + signatures (secure delegation
chain) can be traced from some T a to a DNSSEC key
K lower in the tree. The original DNSSEC design en-
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Symbol Description

r A resource record

k A DNSKEY

sk An RRSIG (verifiable by k)

R An RRset defined as
(r0, · · · , ri, s0, · · · , sj)

Rs A secure R with one or more sk

K A DNSKEY RRset defined as

(k0, · · · , ki, s
k0
0 , · · · , skl

j )

T a A k trust anchor

z A secure zone defined as
(Rs

0, · · · , Rs
i , K)

Ni The set of online nameservers
for a zone zi

Zs The set of all secure zones

Table 1: Definition of terms

visioned that the its deployment would be rolled out
in a top-down manner. Thus only the root zone’s K
would need to be configured in all resolvers’ T a sets
and all secure delegations would follow the existing
DNS hierarchy. However without the root and top
level domains deploying DNSSEC (as is the case to-
day) there could be potentially millions of isolated
trust anchors. In fact various approaches have been
proposed for securely obtaining these trust anchors.

Secure Resolution Procedure: For illustrative
purposes, Algorithm 1 describes the verification pro-
cess DNSSEC resolvers follow when contacting and
querying zones for DNSSEC data. Table 1 summa-
rizes the notations used in describing a secure zone.

3 Monitoring and Measure-
ment

Although the DNSSEC deployment is still in its early
stages, our measurement results have already re-
vealed some key challenges that face Internet cryp-
tographic systems. Our DNSSEC monitoring project
has been operating since major DNSSEC deployment
efforts began over 2 years ago. During that time, the
number of monitored zones has grown from tens to
several thousand zones. This is still a minuscule frac-

Algorithm 1: Resolution algorithm for DNSSEC

Data: Given Ni

Input: Query (Q) for “www.foo.bar” from
foo.bar (zi)

begin
if get Ki from Ni then

if able to trace chain from known T a

then
send Q to one of Ni

if ∃ Rs ∈ zi such that Q ∈ Rs

AND verify signatures in Rs against
Ki then

Data is verified
else

Unable to verify data

else
Key cannot be verified as zi’s

else
No data for zi can be verified

end

tion of the total number of DNS zones, but our set
continues to grow rapidly.

Despite the relatively small size in its initial rollout,
DNSSEC is quite complex and scaling the monitoring
is already a major concern. The number of records in
a zone can vary from tens to millions and each DNS
zone is served by several authoritative servers. Thus,
even a single zone is, essentially, a distributed view of
a dataset. This fact raises interesting questions about
what to monitor and how to quantify the results in a
way that provides both insight to general trends and
an ability to analyze specific issues.

In addition to the distributed nature of a zone,
the view of its data also varies depending on the
location that it is monitored from. In the simplest
case, connectivity issues may prevent some moni-
toring points (called pollers) from reaching a zone’s
servers. Although one may assume that connectiv-
ity problems are rare, middleboxes (such as firewalls,
NATs, or proxies) are pervasive today. Such middle-
boxes along the paths between pollers and the au-
thoritative servers, and other qualities of the path
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itself, can dramatically change the view of a zone.
Our data analysis in later sections will illustrate the
impact of middleboxes; for the moment it suffices to
say that the location of monitoring is an important
factor. During the course of deploying our monitor-
ing system, our set of pollers has expanded from a
single poller to a collection of distributed pollers in
different continents, and this has offered fundamen-
tally different views of some DNSSEC datasets.

Our monitoring system gathers a vast volume of
data on DNSSEC resource record sets (RRsets) as
viewed from different locations over different times.
The detailed data is publicly available and it allows
people to investigate specific questions such as “was
RRset X available from pollers in Asia on January 31,
2008?” But the vast volume of raw data provides lit-
tle insight into how the overall system is performing.
The situation is analogous to monitoring BGP rout-
ing, another Internet-scale system. BGP monitoring
projects such as Oregon RouteViews [11] provide in-
valuable raw data containing millions (if not billions)
of BGP updates. Hidden in this data are important
lessons about the overall system behavior, but sim-
ply looking at raw BGP update logs does not directly
answer the question of how well BGP is performing.
Similarly, simply presenting millions of DNS RRset
query results does not directly answer the question
of how well DNSSEC is performing, how effective it
may be in providing cryptographic protections for the
DNSSEC-enabled zones, and more importantly, how
these measures may be changing over time.

In order to gain a quantitative assessment of
DNSSEC as a whole, we derived the following three
measurement metrics:

• Availability: This measures whether the sys-
tem can provide all the data to the end-systems
requesting it.

• Verifiability: This measures whether the end-
system can cryptographically verify the data it
receives.

• Validity: This measures whether the verified
data is actually valid. Note that in an actual
deployments, it does not necessarily follow that
all verified data is indeed valid.

In the following three subsections, we describe each
metric in detail and present our approach for quan-
tifying the results.

3.1 Availability

Intuitively, one would like to know whether a secure
zone is “available.” This is an important 2-way street
because zone operators need to be aware of any prob-
lems resolvers may have in receiving their data, and
resolvers would like to know why they may be un-
able to get certain data from a zone. However, be-
fore one can know if a zone is “available,” one must
define what that means. Thus, we define a mea-
sure that captures the intuitive notion of availabil-
ity, but in quantifiable metric. In Section 4, we show
how this metric is effective in quantifying DNSSEC’s
non-uniformity. Such a quantification should facili-
tate an empirical way to measure improvements in
DNSSEC’s deployment.

Selecting RRsets and Nameservers: A secure
zone is comprised of a set of RRsets. The number of
these sets in a zone can range from fewer than ten to
over tens of millions, but the DNSKEY set (key-set)
plays an special role in DNSSEC. The key-set holds
the zone’s public key(s), and by definition, every se-
cure zone must contain an instance of this set at its
apex. The keys in the key-set are required to verify
other RRsets and are also needed to verify authen-
tication chains to descendant zones in the DNSSEC
hierarchy (Figure 1). Without getting the key-set,
even if a resolver can obtain other RRsets, it cannot
verify them. We thus argue that for the purpose of
DNSSEC, zone availability can be reasonably repre-
sented by the availability of the key-set itself.

Having identified a specific set to monitor, we next
consider which of the many authoritative servers of
a zone to query. Work in [14] has shown that, due
to various configuration errors, different servers of the
same zone may exhibit different behaviors. For exam-
ple, some may be listed as authoritative but actually
fail to answer queries, and some other servers may
be authoritative but unreachable. In this paper we
focuses on whether a zone’s key-set is available via
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any authoritative server1.
Availability Metric: Given a set of pollers (P )

who send queries at a set of given polling times (T ),
we denote the availability of zone zj from poller pi at
time t ∈ T as A(pi, zj , t). In this paper, A(pi, zj , t)
is either 1 to indicate the poller was able to obtain
zj ’s key-set (Kj), or 0 to indicating it could not be
retrieved. For example, A(p1, z1, t) is set to 1 if poller
p1 could obtain K1 from zone z1 at time t. Similarly
A(p2, z1, t) is set to 0 if poller p2 could not obtain the
K1 from zone z1 at time t.

This metric is designed to allow a more nuanced
definition of availability in which the value can vary
between 0 and 1. For example, one might include
representations for nameserver availability, a combi-
nation of multiple RRsets, the agreement ratio be-
tween a zone’s nameservers, or other facets. However
in this paper, a simple definition of availability suf-
fices and we set the value of A(pi, zj , t) to either 1
(Kj obtained) or 0 (Kj not obtained).

Having defined zone availability for a particular
poller at a particular time t, we combine the re-
sults from multiple pollers to obtain a single for
the zone availability at time t. Let Amax(zj , t) =
maxi=0,|P |A(pi, zj , t) denote the highest availability
metric obtained for any poller. This value repre-
sents the best observed view of availability for this
zone at this time. We combine results from other
pollers by measuring their distance from this best
value. We say a zone zj is available at time t iff
Amax(zj , t) > 0. Our later results show that a vast
majority of DNSSEC zones were “available” during
polling times ∈ T .

Availability Dispersion Metric: While the
above definition of availability focuses on whether
some resolver (represented by pi) can reach a zone,
we are also interested in describing how many re-
solvers can reach the zone. Our later results show
that in many cases, even though some resolvers can
reach a zone, others cannot. If a zone is available,
the variance in availability is quantified as availabil-
ity dispersion. More precisely, we denote the zone
zj ’s availability dispersion at time t as:

1Our monitoring system is able to detect the problems re-
ported in [14]. However, this is beyond the scope of this paper.

disp(zj , t) =
∑|P |

i=0 Amax(zj , t)−A(pi, zj , t)
|P |

The intuition for the dispersion metric first consid-
ers the zone’s Amax(zj , t). All other pollers are com-
pared against this best case and pollers with lower
availability increases the dispersion. For example, if
all pollers see a zone as available the dispersion will
be 0. Furthermore, if we take the limit as the num-
ber of polling locations approaches the total number
of resolvers on the Internet, we can see that the avail-
ability dispersion approaches the mean behavior for
resolvers.

Recall our metric is designed for A(pi, zj , t) values
that range between 0 and 1, but this paper consid-
ers only values of 0 and 1 and thus disp() can be
simplified. Since dispersion is only calculated if at
least one poller can reach the zone (Amax(zj , t) = 1),
any other poller that can reach the zone will not con-
tribute to the numerator in dispersion (Amax(zj , t)−
A(pi, zj , t) = 0), but A(pi, zj , t) = 0 will contribute
1 to the numerator (Amax(zj , t) − A(pi, zj , t) = 1).
Therefore, our dispersion calculation simplifies to the
average number of failed pollers.

Next, we take the instantaneous metrics and ap-
ply an Exponentially Weighted Moving Average
(EWMA) to obtain:

disp(zj) = (α× disp(zj))×
(
(1− α)× disp(́zj)

)
EWMA incorporates the history of dispersion

without over-penalizing zones who are normally avail-
able but were not at the time of a recent poll and
without being overly charitable to zones that are nor-
mally unavailable, but who were available at the time
of the last poll.

Because high-dispersion indicates potential prob-
lems, whereas low or no dispersion represents that the
effect on availability is uniform, we take the comple-
ment of the average availability dispersion to reflect
the Internet’s effect on availability:

availdisp(zj) =
(
1− disp(zj)

)
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3.2 Verifiability

The previous section presented a metric for assessing
the availability of DNSKEY RRsets (key-sets) and
by extension the zones that serve them. But sim-
ply accepting key-sets without any verification de-
feats the underlying purpose of adding cryptography.
DNSSEC was introduced because resolvers may re-
ceive incorrect responses caused by unintentional er-
rors or intentional attacks. Even using key-sets can
leave a resolver vulnerable if a man-in-the-middle at-
tack allows an adversary to give a resolver a bad
key [4, 13]. Thus a, resolver must be able to ver-
ify key-sets and this section introduces a metric that
captures the intuitive notion of whether this can be
done.

To verify any data, a resolver must be configured
with some initial set of keys from trusted zones, re-
ferred to as trust anchors. Figure 1 illustrates this
process.

If all zones were secure and each secure zone coordi-
nated with its parent in the DNS tree, then resolvers
would only need to be configured with a single trust
anchor, corresponding to the root public key. How-
ever, not all zones are secure and not all secure zones
coordinate with their parents in the DNS tree. The
result is that there are gaps in the authentication
chain and these gaps must be bridged by adding ad-
ditional trust anchors. In the worst case, there could
be no authentication chains and a resolver would need
to be configured with a trust anchor corresponding to
each zone (which would be tens of millions for a full
deployment). In the ideal case, resolvers are config-
ured with a single trust anchor. To quantify where
the current deployment stands, we introduce a veri-
fiability metric that captures the amount of configu-
ration needed to verify key-sets.

Verifiability Metric: Let T a denote a trust an-
chor. We say the key-set (Ki) for zone zi is covered
by trust anchor T a iff there is an authentication chain
leading from T a to zi. If |Zs| denotes the number of
total secure zones and |T a| is the minimum number
of trust anchors needed to cover all secure zones then
we say the overall verifiability of the system is:

V f = 1− |T a| − 1
|Zs|

The intuition for this expression comes from
DNSSEC’s goal of a single trust anchor. Thus, the
expression accepts a single trust anchor as optimal
(hence the −1 term), and penalizes all instances
above 1. Note that if no authentication chains had
been established between any secure zones, a resolver
would need to configure Ki for each zone zi ∈ Zs as a
trust anchor, and V f → 0. If DNSSEC is deployed in
a contiguous region of the DNS tree and all zones in
this region establish authentication chains with their
direct parent, then we will only need a single T a and
V f → 1.

3.3 Validity

The previous sections considered whether zones’ crit-
ical DNSKEY RRsets (key-sets) were available to re-
solvers and how much configuration was needed to
verify these key-sets. This section considers whether
data is actually valid and illustrates that there are
key differences between verified data and valid data.
More specifically, verification refers the cryptographic
process in which a data unit is either verified or not.
Validity, on the other hand, refers to whether the
data actually corresponds to what the zone adminis-
trator intended (ground truth) and a data unit is ei-
ther valid or invalid. Based on the overlapping intents
of verification and validity there are four possible
combinations, which are shown in Table 2. Our va-
lidity metric (V d) focuses on the validity of DNSSEC
data.

Ideally, data obtained by a resolver is both valid
and verified (upper left box in Table 2). For example,
if a zone administrator correctly enters and signs zone
data, then a resolver should be able to obtain and
verify this valid data. DNSSEC adds cryptographic
checks in the hope of detecting invalid data by using
cryptography alone (lower right box in Table 2). For
example, if someone modifies data in flight (after be-
ing signed), then the old values become invalid and
one expects that the signature verification will fail.
This is the intended behavior of DNSSEC but both
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Verified Unverified
Valid Ideal Behavior False Negative

Invalid False Positive Intended Defense

Table 2: Verification vs validity matrix.

operational errors and successful attacks can cause
this to fail.

False Negatives: The case of false negatives (up-
per right box in Table 2) occur when a resolver gets
data that is actually valid, but is unable to verify it.
The most trivial case of this is when a resolver re-
ceives plain DNS responses, but finds that there are
no signatures attached. This, for example, was ob-
served during the early DNSSEC development. Some
sites could not obtain signed data from secure zones
even though the server correctly attached the signa-
tures. This problem was caused by intervening fire-
walls that blocked any response that contained sig-
natures. From the firewall’s perspective: the resolver
had made a simple request but the response also in-
cluded the signatures. To the well intentioned fire-
wall, these unknown signature records were clearly
some sort of attack and the responses were dropped.
Answers that did not include signatures were passed
through, but could not be verified by the resolver.

Another important example of false negatives can
occur when a zone unintentionally breaks its own se-
cure delegation from its parent. This can happen if
a zone creates a new key pair and re-signs all RRsets
with the new key before updating the authentica-
tion chain with the parent. Specifically, this is when
the child zone updates its key-set, but the parent
has yet to update the corresponding delegation (DS)
record(s). From the perspective of the parent zone
and resolvers, the authentication chain points to the
previous key but all signatures have been produced by
the new key. This scenario arises due to the difficulty
in coordinating operational practices (key rollovers)
across administrative boundaries. Based on the an-
ticipation of this particular scenario we track it as
follows.

Let |RDS | denote the total number of unique DS
records seen by pollers and let |RDS

v | denote the num-

ber of verified DS records that match key-sets in the
corresponding child zone. The ratio between these
values reflects the validity of authentication chains,
or delegation validity :

Vdeleg =
|RDS

v |
|RDS |

Ideally, every delegation record would verify a key-
set of a corresponding child and Vdeleg → 1. Lack
of verification indicates that: the child has removed
a key-set too quickly and has broken the authentica-
tion chain, or that the parent has been slow in re-
moving on obsolete delegation record, or the parent
has added a new delegation record before the child
was ready. Thus, a ratio value of less than one indi-
cates that there are zones that have broken delega-
tions leading to their child zones.

False Positives: In addition to the configuration
errors described above, False Positives (lower left box
in Table 2) can also occur. To illustrate this we draw
an analogy from BGP and then show a DNSSEC-
specific example.

In BGP there is an infrequent occurrence of routing
leak-outs [8]. In these cases, an Autonomous System
(AS) accidentally announce routes to peers that it re-
ally can’t reach. Here the routers have sent routing
announcement data (and often use MD5 checksums
to make it verifiable), but the data is false. Even
though the MD5 sums on these data streams are ver-
ifiable, the data is not valid. In DNSSEC, an attacker
that has compromised a zone’s private key can gen-
erate and sign records that appear to come from the
zone. These records are invalid (e.g. a record may
contain the wrong IP address of a web server [18]).
However, these records will still pass cryptographic
verification checks. This type of compromise and
other security breaches are hopefully rare, but ad-
ministrative errors are inevitable in large scale de-
ployments.

We show evidence in Section 4 that operational
practices combined with lack of revocation in the
DNSSEC design allow a weak form of false positives
to occur where an attacker can replay stale RRsets
long after the RRsets have been removed from the
zone’s authoritative servers (and have been flushed
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from caches).
An RRset is stale if an administrator has changed

data values in new sets, but a signature covering the
previous values has not expired. In this case, the stale
set could be replayed by an attacker or malfunction-
ing cache. Figure 2 illustrates this scenario. At time
t0, RRset 1 is created and signed. The signature in-
cludes an expiration date of time t2 (indicated by the
bottom bar). At time t1, RRset 1’s value is modi-
fied. For example, the IP address of a host may have
changed. The modified RRset is distributed to all au-
thoritative servers and the previous value is flushed
from caches after the TTL expires. However, an at-
tacker can continue to replay the old record until the
signature expires at time t2. Resolvers that receive
the stale (blue) RRset will verify the signatures and
declare that the set is valid.

Our monitoring system is able to automatically de-
tect stale RRsets by tracking zones over time. We let
Rv denote the set of RRsets whose signatures have
not expired and are still verifiable. Thus, Rv includes
sets that are currently served by a zone and older
sets whose signatures have not expired yet. We de-
note the number of RRsets in Rv as |Rv|. We now
define Rstale such that Rstale ∈ Rv and the sets in
Rstale have different values than those currently be-
ing served (as seen in Figure 2). We say that |Rstale|
is the number of RRsets in Rstale. We pay close at-
tention to these sets because they could be replayed
by an attacker. The ratio of these two values yields
the proportion of stale data that is observed, or the
data freshness:

Vfresh = 1− |Rstale|
|Rv|

A value of 1 indicates that no obsolete RRsets
could be replayed while a value less than 1 indicates
that a fraction of verifiable RRsets could be replayed
and would allow invalid data to be verified.

Note that in the case of a stale RRset, the attacker
is only replaying data that was previously valid. In
many cases, this type of vulnerability will raise lit-
tle or no concern. However, one problematic scenario
occurs when an attacker has compromised a zone’s
private key and the zone attempts an unplanned key

RRset 1

Signature Lifetimet0 t1 t2

Modified RRset 1
D
a
t
e

t3

Figure 2: If data changes, such as in “Modified RRset 1”, then
the old RRset 1 will still be verified by the zone’s keys (even though
the data is no longer valid).

rollover. At such a time, an attacker can replay the
stale key-set in order to verify (but not validate) the
compromised key. Using the compromised key, the
attacker can then forge arbitrary data from the zone.
Some authentication chains have lifetimes of weeks,
months, and in some cases years. Thus, key compro-
mises combined with stale RRset-replays pose serious
challenges. A complete discussion of the vulnerabil-
ities and possible mitigations is beyond the scope of
this paper, but can be found in [13, 4].

We, thus, characterize the validity metric (V d) of
DNSSEC as an n-dimensional tuple of measurable va-
lidity metrics. Other types of validity dimensions are
plausible and worth investigation, but in this work
we use our experience to identify 2 operationally rel-
evant dimensions to characterize:

V d = 〈Vdeleg, Vfresh〉

Our selection of these 2 dimensions is based on ob-
servational evidence that they are existing problems
and that there is also awareness of them in the oper-
ational community.

4 Deployment Status Today

DNSSEC deployment data was collected using the
SecSpider monitoring project [3]. The revised
DNSSEC RFCs [15, 17, 16] were published in March
2005, and our monitoring project began shortly after-
ward in October 2005. The monitoring project uses
a collection of pollers that send DNS queries to the
authoritative name servers of zones and use the DNS
responses to form the raw data for this study. The
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Figure 3: Polling locations

polling locations are located in the United States, Eu-
rope, and Asia, and on networks comprised of univer-
sities, home access, and enterprises (Figure 3). This
monitoring system uses a central server to control
the pollers and schedule when queries should be sent
and where to send them. All pollers are scheduled to
execute the same queries at approximately the same
time from their individual vantage points. In order
to discover new zones, the monitoring system uses
zone transfers (when possible) and exploits DNSSEC
behaviors such as using the NSEC record to “walk”
(e.g. definitively identify and retrieve all records in)
a zone. The overall results provide a detailed history
of each secure zone as viewed from the system’s poller
locations.

The dataset discussed covers October 2005
through January 2008 and includes 11,849 secure
zones. However, while this set of secure zones in-
cludes many well established DNS zones such as the
se ccTLD, it also includes other secure zones that
are clearly deployed only for testing. An example is:
unknownalgorithm.nods.test.jelte.nlnetlabs.nl
In this case, the actual name of the zone indicates
that it is used for testing, and other zones in this
same delegation (under test.jelte.nlnetlabs.nl)
account for over 81% of all secure zones. To focus
on how DNSSEC deployment is proceeding in “pro-
duction” zones, our analysis began by pruning zones
that appeared to be operating in a test-capacity.
In order to classify zones as production we started
by including all secure TLDs and all secure zones
under the arpa TLD as production zones. Next,
we added zones in other parts of the DNS tree that

pointed to an active web server or mail server as
production. Thus, all zones considered in the study
are zones that perform actions that suggest their
operational status is important and taken seriously
by operators. Though it can be argued that this
test may have missed some legitimate zones, and
may have included some test zones, it served as an
automated way to identify reasonable candidates
for measurements. The list of production zones is
also posted on the project website and announced
on DNSSEC deployment mailing lists. Zone admin-
istrators can use a web interface to change a zone’s
status from testing to production or vice versa. This
pruning process reduced the set of secure zones that
were considered in this study from 11,849 to 871
secure “production” zones.

4.1 Availability

Using the metric described in Section 3.1, we begin
our analysis with data as viewed from our polling
locations. At regular intervals, all pollers query all
secure zones2. We set Amax(zi, t) = 1 if at least one
poller could receive a response from zone zi at time t.
Our results found that Amax(zi, t) = 1 in 99.925% of
our experiments. Out of the 871 zones in our study,
only 44 zones ever encountered an instance where
Amax(zi, t) = 0. Because our preprocessing elimi-
nated zones created purely for testing purposes, we
theorized that the reliability of the remaining zones
would be high due to the fact that they run produc-
tion services and their outages would not be signifi-
cant. Our results appear to confirm this. However,
even though these zones are only considered when
they were reachable, different pollers can have very
different views of zone availability. Specifically, when
requesting zone data, resolvers in some locations re-
ceive no answer, while others (at the same time, but
from different locations) have no difficulty obtaining
a response. The availability dispersion metric de-
scribed in the previous section captures this differ-
ence between pollers. Figure 4 shows that roughly
20% of the monitored zones suffer availability disper-

2Similar to the way DNS resolvers operate, a poller that
receives no response will try resending the query. The poller
gives up if no response is received after three queries.
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Figure 4: The rank order of secure zones and their corresponding
availability dispersion in ascending order.

sion. This means that some resolvers may not be
able to receive critical data from a zone based solely
on where they query from.

The reason why this dispersion exists was traced
it to Path Maximum Transmission Unit (PMTU [9])
problems. Recall each link along the path from poller
to authoritative server has a Maximum Transmission
Unit (MTU) that is the largest packet size it can
support. The PMTU is the smallest MTU along a
path. DNSSEC response messages can include pub-
lic keys (DNSKEYs) and signatures (RRSIGS) which
make them considerably larger than a typical DNS
response. As these responses travel along a path
from the authoritative server to the resolver, these
larger UDP packets may exceed the path’s maximum
transmission unit (PMTU). As a result packets may
be fragmented or dropped. In one specific case, the
IP layer had fragmented the DNSSEC response mes-
sages and a local firewall was configured to disallow
fragmented DNS packets. As result, the poller never
received the responses.

To better understand the impact of response packet
size, we modified our pollers to send queries with
varying maximum response sizes. A DNSSEC query
specifies a maximum response size that the resolver
can support. The recommended maximum response
size is 4096 bytes and is set by default. If the query re-
ceived no response, our pollers used a binary search to

find the smallest maximum response size that would
elicit a response. We call the process of sending
queries with varying maximum response size PMTU
exploration. During a PMTU exploration, problems
manifested themselves in one of two ways: either zone
data was received with a truncation bit (TC) set3, or
the message was completely dropped (causing pollers
to timeout). When data was received, the PMTU
exploration was characterized as, “successful,” other-
wise it was considered to have “failed.”

Figure 5 shows that while most pollers were able to
retrieve zone data without encountering PMTU fail-
ures, poller #2 consistently had more trouble than
the others. Figure 5 also indicates that in certain
cases, the DNSKEY RRset size may reduce availabil-
ity to the point that data is unavailable (via UDP)
even after PMTU explorations. Figure 6 shows that
certain pollers have significantly more trouble suc-
cessfully getting data when a PMTU problem has
been encountered. One can note that poller #2 at-
tempts more than 7 times the number of PMTU ex-
plorations of any other poller, and that over 20% of
the PMTU problems result in data that could not
be retrieved via UDP (no matter what size packet is
specified).

A small set of zones suffer uniform PMTU explo-
ration problems across all pollers. We conjecture that
the link with the MTU problem happens to be close
to their source (perhaps the first hop).

It is important to note that modern DNS and
DNSSEC resolvers are encouraged by RFCs to ini-
tially request data using UDP. If a failure (i.e. no re-
sponse) occurs resolvers will generally give up. Thus,
a PMTU failure may not even prompt a resolver to
try TCP. However, if a TC bit is received, resolvers
may try smaller message sizes (PMTU exploration)
or retry their query using TCP. Our results indicate
that TCP is a reliable fall-back mechanism. However,
we also note various opinions in the operational com-
munity decry TCP for DNS [1] and some locations
may disallow TCP queries and/or the TCP query be-
havior may raise other problems.

Compounding the PMTU problem faced by

3The TC bit indicates that the server wants to send more
data but it won’t fit in the existing message.
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DNSSEC is the fact that some network-infrastructure
components assume DNS traffic will not diverge from
a very vanilla specification. Components such as fire-
walls may detect DNSSEC messages as malformed
DNS messages and drop them, fearing that they may
be dangerous. Examples of firewall compatibility is-
sues include Cisco’s PIX firewall before version 6.0.
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In addition, [2] is a broad examination of several
types of home firewall/routers that found a signifi-
cant proportion of these devices simply failed to pro-
cess DNSSEC properly and led some zone operators
to discontinue the use of DNSSEC.

4.2 Verification

DNSSEC envisioned a top-down deployment where
authentication chains would lead from the DNS root
to most, if not all, zones. In stark contrast to this vi-
sion, the secure hierarchy of DNSSEC today is quite
fragmented. Of the 871 secure zones in our study,
fully 662 of these have no authentication chain lead-
ing to them. Ideally, a resolver would only need to
configure one single trust anchor (corresponding to
the DNS root) but today a resolver would need to
manually configure 662 trust anchors in order to ver-
ify all existing signed DNSSEC data. Today, manu-
ally configuring 662 trust anchors and updating these
trust anchors is tedious at best, but this clearly be-
comes infeasible as the number of secure zones moves
from hundreds to millions.

A resolver may choose to only configure some of
the 662 trust anchors and Figure 7 shows the per-
centage of secure zones that can be verified if the
resolver configures trust anchors in a greedy manner.
A resolver that configures the top 10 trust anchors
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can verify data in 25% of the secure zones. This is
because a small number of zones participate in au-
thentication chains. By configuring the trust anchor
for some zone zj , a resolver may also be able to verify
data from other secure descendants of zj . Unfortu-
nately most zones are not part of an authentication
chain and configuring the trust anchor for zi allows
the resolver to verify data from only zi.

It is also important to note that configuring a trust
anchor is not a one-time operation. Whenever a key-
set that exists in a trust anchor list is changed, the
trust anchor list must be updated. The churn in large
trust anchor lists increases operational and configu-
ration overhead.

Our verification metric from the previous section
captures the added configuration challenge. There
are currently 662 trust anchors for 871 zones resulting
in:

V f = 1− 662− 1
871

= 0.241

In an ideal deployment, there would be a single
trust anchor and we would have a score V f = 1.
Earlier monitoring results seemed to suggest that V f

was improving over time and some longer authentica-
tion chains were formed. But unfortunately this im-
provement in V f proved to be an artifact of testing.
Several large collections of test zones were deployed
and connected via authentication chains. These test
zones help operators experiment with managing au-
thentication chains, but don’t reflect production use
and many of these test configurations are operated
by a single organization, so true large scale inter-
administration testing is still needed.

After removing the test zones, there has been little
meaningful change in the V f value. For example, in
October 10th, 2007 V f = 1− 634−1

815 = 0.223. On the
positive side, a number of ccTLDs (notably se, bg, br,
pr) have deployed DNSSEC and could be potentially
become trust anchors for large numbers of zones.

We define an island of security as a zone z and
all secure descendants of z that can be reached by
authentication chain starting at z. Thus the size of
an island is the number of secure zones in the island4.

4If DNSSEC were fully deployed, there would be a single

A single zone that deploys DNSSEC but does not
coordinate authentication chains with its parent or
any of its children forms an island of size 1. Today
there are 662 distinct islands of security and 97.4%
of the islands of security in our study have size 1.

Figure 8 shows the current size of the largest is-
lands. In addition to island size, the number of
distinct administrative domains within the island is
also important. We believe Internet cryptographic
systems are interesting due to both their large size
and their large number of independent administra-
tive authorities. For example, an island of security
that includes 60 zones operated by 60 different orga-
nizations requires coordinating authentication chains
across different organization boundaries and, in our
view, is more interesting than an island operated by
a single administrative domain.

To infer whether an island includes multiple ad-
ministrative domains, we analyzed the number of
unique sets of nameservers serving the zones in each
island. If two zones are served by the same set of
name servers, we assume these zones are operated
by the same administrative domain. Figure 8 shows
that among the largest observable islands, many still
consist of a relatively small number of administrative
domains. The largest island of security includes over
60 secure zones, but only 1 administrative domain.

Reducing the number of required trust anchors and
creating large diverse islands of security are perhaps
the most fundamental challenges facing DNSSEC de-
ployment.

4.3 Validity

As discussed in Section 3.3, validity is distinct from
verification. Due to operator errors, design flaws,
implementation bugs, or intentional attacks, invalid
data may be verified by a resolver (false positives).
Similarly, valid data may fail a verification check
(false negatives). Although, our monitoring did not
detect intentional attacks, the lack of active attacks
was not surprising given the current state of deploy-
ment. Instead, our results focus on two areas where

island of security with the root zone as its trust anchor and its
size would be the total number of DNS zones.
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operational practices lead to false negatives via bro-
ken authentication chains and false positives where
stale data can be replayed.

False Negatives: In order to authenticate zone
data, a resolver must be able to obtain the zone’s
public key. The discussion above shows most of
these public keys need to be manually configured as
trust anchors. For the other public keys that can be
reached via authentication chains, we consider how
well these authentication chains are maintained. In
particular, a secure delegation (DS) record stored at
the parent zone must match a DNSKEY stored at the
child zone. As of January 17th, 2008, our pollers had
observed 1,730 DS records and 1,573 of these records
matched DNSKEYs in the child.

Vdeleg =
1, 573
1, 730

= 0.909

If a zone stores only one DS record for a child, and
this DS record fails to match a DNSKEY, then the
authentication chain is broken. There is no way for
a resolver to verify the child zone’s public key. The
results above suggest that 9% of the authentication
chains observed by our poller were broken and data
verification would have failed for all data in the af-
fected child zone and all its descendents.

On the other hand, if there are multiple DS records
for a child stored at the parent, it may be the case

that one authentication chain works and the other
broken DS records are simply old data that the parent
has been slow to remove. However, DNSSEC envi-
sioned that a parent zone would have exactly one DS
record for each child. Even during a key roll over (e.g.
when the child zone changes its DNSKEY), there is
still exactly one DS record at the parent at all times.
This is accomplished by having multiple DNSKEY
records at the child and rollover procedures are de-
scribed in detail in [7]. During our study 175 zones
always had exactly one DS record at the parent and
75 zones had multiple records at the parent.

False Positives: While we did not observe any
active attacks against secure zones, we did observe
operational practices that would allow a misconfig-
ured cache or attacker to replay stale data. Our anal-
ysis was focused on infrastructure records used by
resolvers to navigate the DNS tree hierarchy. Specif-
ically, we considered whether an attacker or miscon-
figured cache might be able to replay stale DNSKEY,
DS, SOA, NS, and associated A RRsets.

Due to the potential impact of replaying these
records, we tracked changes in them and determined
whether the stale value could be replayed as described
in Section 3.3. Figure 9 breaks the set of secure zones
into buckets based on the number of stale RRsets that
were associated with the zone. Each zone is quantized
based on whether is has 0, 1-10, 11-100, or more than
100 stale RRsets on each day. The results show that
for some time, zones tended to have quite a few stale
sets associated with them. The graphs show that in
December 2006 there were 10 zones with over 100
stale infrastructure records that could be intention-
ally or unintentionally replayed.

This is primarily caused by zones selecting long sig-
nature lifetimes. For example if a DS record is signed
using a one year signature lifetime and changes only
a few days later, the stale DS record can be replayed
until the year long signature expires. Since DNSSEC
includes no revocation mechanism, selecting long sig-
nature lifetimes creates a long period where stale
data may be replayed and verified by unsuspecting
resolvers.

Early in 2007, the zones with more than 100 Rstale

began to decline in number. In fact, currently, there
are no more than a few zones that have more than
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100 stale RRsets. This decline roughly corresponded
in time with stale data monitoring results being avail-
able on our monitoring site and appearing on deploy-
ment mailing lists.

Based on the characterization in Section 3.3 we rep-
resent the state of DNSSEC from January 17th, 2008
as:

Vfresh = 1− 4, 418
22, 329

= 0.802

The longitudinal evaluation of the Vdeleg dimen-
sion, above, shows improvement when contrasted
with Vfresh from October 10th, 2007: Vfresh =
1− 14,476

27,196 = 0.468. Here we see an evident trend.
Overall, this calculates the validity as of October

10th, 2007, and then on January 17th, 2008 as a tuple:

〈0.893, 0.468〉 → 〈0.909, 0.802〉

The merit of these absolute values is subject to de-
bate. However, we present their relative values as
systematic metrics that capture certain deployment
specifics. In this regard, we note that there is a dra-
matic increase in freshness of DNSSEC’s validity. A
qualitative interpretation of this would indicate that
significantly fewer chances exist for resolvers to en-
counter stale, or misconfigured data in DNSSEC.

5 Discussion and Conclusions

Over a few years of monitoring, we have collected
a vast amount of data on DNSSEC’s deployment.
Our goals have consistently been to help inform op-
erational practices with actual data. For example,
the timing of our discovery and dissemination of
RRset staleness coincided with a large drop in its
incidence. We posit that some operational groups
became aware of the implications of rapid re-signing
of their zones and adjusted this behavior. These sim-
ple changes help improve the overall DNSSEC system
and demonstrate the value of distributed monitoring.

More generally, we have presented a set of metrics
that quantify the DNSSEC deployment in ways that
proved quite useful. These metrics have allowed us
to collapse massive volumes of data into a few simple
quantifiable values whose results helped shape fur-
ther analysis and forensics surrounding operational
failure modes. Our use of these metrics has revealed
3 fundamental challenges: First, data in Internet sys-
tems is not always universally available. Issues such
as PMTU limitations, transient failures, and miscon-
figurations are a fact of life for these systems. Us-
ing our availability metric as an indicator, we have
gauged the severity of this PMTU problem and can
now design solutions.

Second, our verifiability metric clearly illustrates
a fundamental challenge facing all cryptographic de-
ployments in the Internet; how does one obtain the
the trust anchor information (e.g. its public key) in
a secure, verified, and robust way? DNSSEC directly
addressed this problem by designing a hierarchical
PKI which minimizes the necessary trust anchor to
one, however its design assumptions are not congru-
ent with the common requirement that every party in
the Internet tends to make their own decision about
whether/when they may deploy new functions. From
the facts that the Internet does not have a central
authority and that not everyone trusts the same par-
ties, one may conjecture that there may necessarily
be multiple trust anchors, making the problem more
difficult. How best to solve this cryptographic boot-
strapping problem remains a critical open question.

The DNSSEC community has taken notice of some
of the problems discussed herein and is exploring
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“look-aside validation” (DLVs [20]) where some cen-
tral site or sites verify many public keys and be-
come de facto authorities. We are also working on
a novel solution that uses our monitoring appara-
tus as a diverse lookup infrastructure that can look
for DNSKEY consistency and provide a repository of
DNSKEYs which, although not cryptographically veri-
fied, form a consistent view from multiple diverse lo-
cations and whose correctness can be double-checked
by individual key owners.

Finally, even early deployment shows DNSSEC is a
highly dynamic and a continuously evolving system.
Thus, its behaviors must be continuously monitored
to capture new failures and challenges. By measuring
one gets data and that can inform a system’s design,
by quantifying data one can decipher its meaning and
gauge the progress, and by monitoring one is able
discover problems as they arise so that designs can
be revisited.
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