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ABSTRACT
Despite significant efforts to obtain an accurate picture of
structure at the level of individual autonomous systems (ASes),
much remains unknown in terms of the quality of the in-
ferred AS maps that have been widely used by the research
community. Building upon our recent results reported in
[16], in this paper we take a first step towards quantifying the
(in)completeness of the observed AS-level connectivity as
seen by the commonly-used vantage points of RouteViews
and RIPE-RIS. Calling the current set of vantage points the
“public view,” we developed a new heuristic to identify all
the ASes whose AS-level connectivity is completely cap-
tured by the public view. Our results indicate that the public
view is capable of revealing the full connectivity of only 4%
of all the ASes, which accounts for 77% of all large ISPs and
34% of small ISPs, but only 0.5% of stub ASes. For the re-
maining 96% ASes, the public view captures their customer-
provider links, but may miss most of their peer links. We
also provide evidences that the bulk of the missing connec-
tivity involves peer links below the line of sight of the public
view, typically between stub ASes and small ISPs as well as
among stub ASes. Our findings call for new ways of infer-
ring AS-level connectivity that do not rely solely on the use
of active/passive measurements from vantage points, and our
preliminary results towards this direction look promising.

1. INTRODUCTION
There exists a number of research efforts (see for exam-

ple [10, 12, 9, 20, 18, 19]) that aim to identify, quantify, and
understand the inherent limitations of the Internet AS maps
inferred from publicly available datasets provided by Route
Views and RIPE-RIS. As a new contribution to the existing
efforts, we conducted a number of case studies that yielded
new insights into which parts of the actual AS topology are
adequately captured in these maps and which parts are miss-
ing and why, as reported in a recent paper [16]. Calling the
commonly used vantage points of Route Views and RIPE-

RIS the “public view,” we showed that this public view (i)
accounts for the full connectivity of all the Tier-1 ASes, (ii)
captures all customer-provider links in the Internet, provided
that one includes the historical data from the public view,
and (iii) misses a large number of peer links, especially in
the lower tiers of the Internet routing hierarchy.

Building upon the above findings, in this paper we take
a first step towards quantifying how much of the AS-level
topological connectivity may be missing from the public view.
Based on the no-valley routing policy, we first develop a
new heuristic to accurately identify all the customer-provider
links in the observed AS topology; we then classify ASes
into customer-provider relations. Since a customer AS can
observe all the AS links of its provider(s) over a long enough
time period, by identifying those ASes who have at least one
customer AS that hosts a vantage point in the public view,
we are able to identify all the ASes whose connectivity is
captured in the public view.

Our results show that the public view is capable of reveal-
ing the full peer connectivity of only 4% of all the ASes,
which accounts for 77% of all the large ISPs and 34% of
the small ISPs, but only 0.5% of the stub ASes. For the re-
maining 96% ASes, the public view captures their customer-
provider links, but may miss their peer links. Although it is
generally believed that the public view misses a large portion
of AS links in the Internet topology, we believe that we are
the first to be able to quantify exactly how much is missing.

Our findings are not very encouraging for settling the (in)
completeness problem of inferred AS-level topology maps.
For one, the part of the actual AS-level topology that are
largely uncovered by the public view is the edge ASes’ con-
nectivity, and the large number of edge ASes makes it infea-
sible to install vantage points in all of them, not to mention a
number of potential non-techical issues involved in doing so.
To make things worse, the edge connectivity is precisely the
part of the AS topology that changes most[17]. One driving
factor is the aggressive peering among ASes to reduce cost
and improve performance. The ever increasing connectiv-
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ity density around the edges plays a key role in the Internet
topology evolution. Not only is the incomplete part hard to
capture, it also represents a moving target.

Faced with this dilemma when it comes to obtain com-
plete Inferred AS maps, our results call for alternative ap-
proaches to inferring AS-level connectivity that do not solely
rely on the use of vantage points (through either active or
passive measurements), but is based more on the fact that
ASes are involved in business relationship, and infers AS
connectivities from knowing their business model, economic
health, geographic extent, carried traffic, etc.. Compared to
the largely AS-agnostic inference approaches that have been
considered so far, more AS-aware methods have the promise
to capture the key forces at work more accurately in the ac-
tual AS-level eco-system. More specifically, in contrast to
the work of Ratz et al. [18], we are able to provide certain
absolute bounds on the observed AS level connectivity based
on AS classification and link classification, and to pinpoint
where in the hierarchy these links are missing. Such meth-
ods open up new opportunities for measurement, inference,
and modeling.

2. DATA SETS
In this paper we use two types of data to infer AS relation-

ships, classify ASes, and infer ASes’ presence at IXPs.
BGP data: Throughout this paper, we mainly use BGP

data from Routeviews[8] and RIPE-RIS[7] collected over a
7-month period from 2007-06-01 to 2007-12-31. We term
this data set public view. This data include BGP tables and
updates from ∼700 operational routers in ∼400 ASes, al-
though only about 100+ routers from each of the two sources
have full BGP routing table data as indicated by Figure 1.
Due to the overlap between Routeviews and RIPE-RIS in
their monitored ASes, and due to the fact that some ASes
have multiple monitors, the set of routers with full tables
correspond to only 126 unique ASes. All Tier-1 ASes are
included in this set except AS209 (Qwest); fortunately one
of AS209’s customers has a monitor which can observe all
AS209’s connectivity over time. Although there are addi-
tional BGP data sources such as route servers, looking glasses
and the Internet Routing Registry [3], the amount of addi-
tional AS connectivity they uncover is incremental, so we do
not use them here. Furthermore, these extra data sources of-
ten only provide partial BGP tables (and no updates), and, as
we plain in Section 5, our heuristic for an accurate quantifi-
cation of the observed completeness requires vantage points
with full routing tables. Note that we currently do not use
AS topological data derived from traceroute measurements
due to the well known issues in converting router paths to
AS paths, which have been extensively reported in previous
work [11, 15, 13, 17].

IXP data: There are a number of websites, such as Packet
Clearing House (PCH) [4], Peeringdb [5], and Euro-IX [1],
that maintain a list of IXPs worldwide and also provide a list
of ISP participants in some of the IXPs. The list of IXP fa-
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Figure 1: Table size of monitors in public view.
Presences (AS-IXP pairs) Peeringdb Euro-IX PCH
Listed on source website 2,552 2,203 862
Inferred from reverse DNS 3,043 3,618
Unique within the source 4,442 2,203 3,968
Total unique across all sources 6,215

Table 1: IXP membership data, December 2007.

cilities is believed very close to being complete [6], the list
of ISP participants at the IXPs may be either incomplete or
outdated since it is provided by the ISPs on a voluntary basis.
However, (1) most IXPs publish the subnets they use in their
layer-2 clouds, and (2) the best current practice [2] recom-
mends that each IXP participant keeps reverse DNS entries
for their assigned IP addresses inside the IXP subnet and no
entries for unassigned addresses. Based on the combination
of (1) and (2), we adopted the method used in [19] to in-
fer IXP participants. The basic idea is to do reverse DNS
lookups on the IXP subnet IPs, and then infer the participant
ISPs from the returned domain names.

We define an (AS, IXP ) pair as a presence. For example,
if both AS A and AS B peer at IXP X , there are two pres-
ences: (A,X) and (B,X). From the aforementioned three
data sources, we were able to derive a total of 6,215 unique
presences corresponding to 2,843 ASes in 177 IXPs world-
wide. Table 1 shows the breakdown of the observed pres-
ences. From the list of presences inferred from DNS for
Peeringdb, 491 were already in its participant list, and from
the presences inferred from DNS for PCH, 512 were already
in the participant list.

3. NETWORK CLASSIFICATION
In this section we describe a novel method to infer the

business relationships between ASes, and our process of us-
ing this method to classify different ASes into classes.

3.1 Inferring AS Relationships
Our recent work [16] reported that monitors at the top of

the routing hierarchy (i.e. Tier-1 monitors) are able to re-
veal all the downstream provider-customer connectivity over
time 1. This is an important observation because, by defini-
tion, each non-Tier-1 AS is a customer of (or downstream
1Assuming routes follow a no-valley policy.
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of) at least one Tier-1 AS, and essentially all the provider-
customer links in the Internet can be observed at the Tier-1
monitors over time. This is the basic idea of our AS relation-
ship inference algorithm.

Our algorithm assumes the set of Tier-1 ASes are already
known2. By definition of Tier-1 ASes, all the links between
Tier-1 ASes are peer links, and a Tier-1 AS is not a customer
of any other ASes. Suppose a monitor at Tier-1 ASm reveals
an ASPATH m-a1-a2-...-an. The link m-a1 can be either
a provider-customer link, or a peer link since sometimes a
Tier-1 might have a specially arranged peer relationship with
a lower-tiered AS. However, according to the no-valley pol-
icy, a1-a2, a2-a3, ... , an−1-an must be provider-customer
links, because a peer or provider route should never be prop-
agated upstream from a1 to m, therefore the segment a2,
..., an must correspond to a customer route received by a1.
How can one infer the relationship of m-a1 link? According
to the no-valley policy, if m-a1 is provider-customer link,
this link should appear in the routes propagated from m to
other Tier-1 ASes, and whose monitors will show this link.
On the other hand, if m-a1 is a peer link, it should never
be propagated to or seen by monitors at other Tier-1 ASes
(other than m itself). Given we have monitors in all but one
Tier-1 ASes, we can accurately infer the relationship m-a1

by looking at whether it is revealed by other Tier-1 ASes be-
sides m. Using the above method, we can find and label all
the provider-customer links, while all other links revealed by
all monitors are then labeled as peer links.

Our algorithm is illustrated in Figure 2, where 1, 2, 3,
and 4 are known to be Tier-1 ASes. Suppose Tier-1 AS 2
monitor reveals an ASPATH 2-5-6-8 and another ASPATH
2-7-9; while monitors at Tier-1 AS 4 reveals an ASAPTH
4-2-7-9, but none of 1, 3, 4 reveals an ASPATH ending at
2-5-6-8. According to the above algorithm, 5-6, 6-8, and
7-9 are definitely provider-customer links. 2-7 is provider-
customer link since it is revealed by Tier-1 ASes other than
2, while 2-5 is peer link since it is not revealed by any other
Tier-1 ASes. Furthermore, suppose AS 6 is a monitor and it
reveals link 6-7, and 6-7 is never revealed by Tier-1s 1,2,3,
or 4. Then this 6-7 is a peer link according to our algorithm.

From our measurements of Tier-1 routes over the 7-month
period, we were able to infer a total of 70,698 provider-
customer links. We also noticed some of these links were
in routes that had a very short lifetime (less than 2 days).
These cases are most likely caused by BGP misconfigura-
tions (e.g. route leakages) or prefix hijacks, as described in
[14]. After filtering out all the routes with a lifetime shorter
than 2 days, we excluded 5,239 links, and ended up with a
total of 65,459 provider-customer links.

3.2 AS classification
In this section we make use of the inferred provider-customer

relations to classify ASes into several functional types. In

2The list of Tier-1 ASes can be obtained from website such as
http://en.wikipedia.org/wiki/Tier_1_carrier
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Figure 2: Provider-customer links are revealed over time
to Tier-1 monitors.

the past this classification has been done based on the de-
gree of an AS, or the number of prefixes originated by the
AS. Unfortunately, the degree can be misleading since it in-
cludes a mix of providers, peers and customers in the count;
the number of prefixes originated by an AS may also be not
very meaningful since the length of the prefixes can be very
different and the routes carried downstream may not be ac-
counted.

To overcome these limitations, we use the number of down-
stream customer ASes (or “customer cone”) to classify ASes;
the number of downstream customers were extracted from
the routes gleaned over the 7-month period from the Tier-1
monitors. Figure 3 shows the distribution of the number of
downstream customers per AS. We note that about 80% of
the ASes do not have any customers, and a significant frac-
tion of ASes only have a very small number of customers.
We thus label as stub those ASes with 4 or less customers,
which encompass about 92% of all the ASes. This stub class
should correspond to end networks which either do not pro-
vide transit at all, or offer very limited transit service to few
local customers, e.g. universities providing transit connec-
tivity for small research facilities. Further, based on the knee
of the distribution in Figure 3, we label as small ISPs those
ASes which have between 5 and 50 downstream customers.
They correspond to about 6% of the total ASes. The remain-
ing ASes in the long tail which are not known as Tier-1s are
labeled as large ISPs. Table 3 shows the number of ASes
in each class. We analyzed the sensitivity of the classifica-
tion thresholds by changing the values slightly, which did
not lead to significant difference in the end result.

4. COVERAGE OF THE PUBLIC VIEW
In this section we quantify the completeness of the AS

topology as observed by the public view by a few measures.
First we would like to note that according to observations
made in [16], a monitor can discover all the connections of
all the upstream ASes over time. For example, in Figure 2, a
monitor at AS 7 will receive routes from upstream providers
that will contain the peer links existing upstream, in this case
the links 2-1, 2-3, 2-4 and 2-5 (in addition to the provider-
customer links existing upstream). Therefore, by starting at

3
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Figure 3: Distribution of number of downstream cus-
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AS 7 and following all provider-customer links upstream, we
pass through the ASes that are covered by AS 7, in the sense
that AS 7 is able to reveal all their connectivity. In Figure 2,
the ASes covered by AS 7 is just AS 2, but AS 6 covers both
AS 5 and AS 2. We have the following definition:

Covered AS: is an AS that can be reached by a moni-
tor using a provider chain, e.g. a sequence of customer →
provider links. If an AS X is covered, than all its connectiv-
ity, including the peer links, are revealed in the public view
by the covering monitor(s). If the monitor is a router residing
in X , then X is also considered covered.

We measured the number of ASes covered by the moni-
tors in the public view, the results are shown in Table 2. For
comparison purposes, we included both the set of monitors
with full tables and full+partial tables, though the end re-
sult is very similar. The most striking observation is that the
current set of monitors in public view is only able to cover
4% of the total number of ASes, which indicates that the
widely used view used by the research community may in
fact miss most of the peer connectivity in the network hap-
pening within the remaining 96% of the ASes.

We extend this analysis to prefixes and traffic volume in
the following way. Assume AS i originates Pi prefixes,
then we add up the prefixes for all ASes covered by AS
i to produce the total number of prefixes covered by AS
i:
∑

i∈cov Pi. That is, with our monitor set, we are able
to cover the AS links used in all the routes to these pre-
fixes. According to Table 2, at least 22% of the prefixes
are reachable through AS links already covered. This num-
ber should be taken as a lower bound, since there can be
prefixes not covered that are reached always through already
covered routes.

In order to extend this analysis to traffic, we make use of
proprietary Netflow data from a Tier-1 backbone. We de-
note by fi the total fraction of traffic received by the Pi pre-
fixes originated by AS i (which we can easily extract from
the Netflow data)3. Then the fraction of covered traffic is

3We can view fi as a measure of popularity of AS i.

Parameter Full tables Full+partial tables
No. monitored 121 411

ASes
No. ASes 1,101 / 28,486 ' 4% 1,552 / 28,486 ' 5 %
Prefixes 52,861 / 236,237 ' 22% 60,987 / 236,237 ' 26%
Traffic ' 22% ' 25%

Table 2: Coverage of BGP monitors.

Type ASes Monitored Covered ASes
ASes aggregated by covering type

Tier-1 9 8 9 (100%) 8
Large ISP 436 45 337 (77.3%) 954
Small ISP 1,829 36 629 (34.4%) 269

Stubs 26,209 37 126 (0.5%) 160

Table 3: Coverage of BGP monitors for different net-
work types.

given by
∑

i∈cov fi, which is about 22% according to Table
2. Again, this should be viewed as a lower bound, in the
sense that at least 22% of the traffic in the network follow
AS links already covered by the monitor set.

Finally, we do an analysis of the covered ASes in terms of
their classes, which is shown in Table 3. The column “Cov-
ered ASes-aggregated” refers to the total fraction of covered
ASes in each class, whereas the column “Covered ASes-by
covering type” refers to the number of ASes covered by the
monitors in each class. For instance, 77.3% of the large ISPs
are covered by monitors, and monitors in large ISPs cover
954 total ASes. The numbers in the table indicate that Tier-
1s are fully covered, large ISPs are mostly covered, small
ISPs remain largely uncovered (just 34.4%), and stubs are
almost completely uncovered (99.5%). This is because most
of the monitors reside in the core of the network, and in or-
der to cover a stub, we would need to place a monitor in the
stub or in any of its downstreams which is unfeasible to do
at the scale of the Internet due to the very large number of
stubs in the network.

The public view captures all connectivity of a covered AS,
including all of its peer links. For an AS not being covered,
the public view captures all of its customer-provider links
and some peer links, but may miss most of their peer links.
For example, if AS C is covered but AS U and V are not,
then a peer link C–U will be captured by the public view,
but the peer link U–V will not. Therefore, how much con-
nectivity the public view misses depends on how many peer
links exist between the 96% ASes that are not covered. The
more such peer links, the more connectivity the public view
misses. Our definition of coverage provides an upper bound
estimate for the missing connectivity by the public view.

5. QUANTIFYING THE INVISIBLE CON-
NECTIVITY

In the previous section we analyzed how complete was the
view of the current set of public monitors in terms of covered
ASes, prefixes and traffic. In this section we look into estab-
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Figure 4: Links captured using monitors with full BGP
tables, 7-month period.

lishing the bound on the number of peer links that are miss-
ing from observation. Figure 4 shows the cumulative number
of unique customer-provider and peer links captured by the
monitors with full tables when picked by random ordering.
We can clearly observe that customer-provider links are all
covered after a few monitors4. However, when we look at
the curve for peer links, we notice a steady increase as we
add more monitors, in the sense that each monitor adds new
peer links that were hidden before. The challenge now lies
in estimating how much connectivity in terms of peer links
remains invisible after adding the nth monitor. We estimate
this value by using the following simple model. Assume
there are N ASes in the network and each can potentially
have a monitor to provide BGP routing tables and updates to
public view. Now suppose we keep collecting peer links by
looking at these monitors, one after another other in a ran-
dom order, and we want to know how many peer links are
revealed after looking at n monitors. The number of visible
peer links after observing n monitors, V (n) is given by:

V (n) =
∑

i

pi(n) =
∑

i

(1−
(
N−Si

n

)(
N
n

) ) (1)

where pi(n) is the probability to cover a specific link i after
observing n monitors. pi(n) is given by the hypergeometric
distribution, where Si is the number of monitors that use link

i and (N−Si
n )

(N
n) is the probability that link i remains hidden

after looking at n monitors.
Figures 5 reproduces the curve of peer links of Figure 4.

We note that after a certain number of monitors, the number
of collected peer links follows a linear increase trend that
we can explain by our simple model. Assuming n � N ,
the hypergeometric distro in Equation 1 can be replaced by
a binomial distro having parameter si = Si

N . We term si the
scope of link i. Therefore, we would have:

V (n) '
∑

i

(1− (1− si)n) ' L−
∑

i

(1− si)n (2)

4If the first monitors were Tier1s, they would be covered immedi-
ately, as we saw in previous section.
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Figure 5: Modeling the exposure of peer links.

where L is the total number of peer links in the network.
We have been assuming that all nodes have the same chance

of being randomly picked as a monitor, where in reality just
by looking at Table 3, we note that there is a bias to pick
monitors that are at the core of the network. Therefore,
to account for this bias, we sort monitors into transits and
stubs, and treat these cases separately. Given the current
monitor set has nt = 89 transits (Tier1+small+large ISPs)
and ns = 37 stubs, we compute the weight of the stubs as
ws = ns

Ns
and the weight of the transits as wt = nt

Nt
, where

Ns and Nt are the number of stubs and transits in the net-
work respectively. In other words, if there were only one
stub and one transit in the network, the transit would have
wt

ws
' 28 more chances of being picked as a monitor than the

stub. Therefore, a new monitor will be a stub with chances
q ' wsNs

wsNs+wtNt
and a transit with chances 1 − q, for n �

Ns, Nt. Therefore, we can rewrite si = qsi,s + (1 − q)si,t,
where si,s is the fraction of stubs that use link i, and si,t are
the fraction of transits that use link i.

Lets denote H(n) =
∑

i(1 − si)n the number of hidden
links after observing n nodes. Note that for a sufficiently
large number of monitors n, the number of hidden links
H(n) can be well approximated by considering only the con-
tribution of very small scope links since the links with high
scope were probably already revealed. Lets assume these
hidden links have a very small probability si,t = si,s = β of
being revealed by a given monitor, then we can write:

H(n) ' A(1− β)n ' A(1− nβ)

where A is the total number of links with very small scope.
Therefore, we can rewrite Equation 2 as:

V (n) ' L−A(1− nβ) ' (L−A) +Aβn

which explains the linear trend of the curve in Figure 5. The
parameters (L−A) andAβ can be estimated by curve fitting
the measured data in Figure 5. The parameter β quantifies
the chances of a monitor to reveal a hidden peer link (after
looking into a large number of monitors). In the worst case,
for a peer link between two stubs, the link is only revealed
by the two incident monitors: β = q 2

Ns
. On the other hand,

in the best case β ' 1/n, where n is the number of monitors

5
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Figure 6: Establishing bounds for the number of peer
links based on the link scope parameter β.

available, i.e. the hidden peer link is at least as hard to cap-
ture as the number of monitors used so far to capture it. So
we have q 2

Ns
< β < 1

n . In Figure 6 we show a projection of
the number of total peer links L depending on the value of
β. If we are on the left side of the curve, then all remaining
hidden peer links are at the edge of network between stub
ASes. If we are on the right side, then all peer links are in
the core and already captured by our monitors. Comparing
these values with the ∼ 30k peer links captured by the cur-
rent monitors, we estimate that the monitors’s view might be
missing roughly up to 90% or more of the total peer connec-
tivity.

6. LARGE CONTENT NETWORKS
Since majority of the peer links are missing from public

view and it is impossible to install a BGP monitor in every
AS in the network, new methods are required to fill in the
missing peer links to achieve a complete and accurate AS
level map. In this section we develop a method towards this
goal. We focused on large content networks in this paper
because previous work [16] has shown their peer links are
mostly missing from public view thus we are focusing on
a challenging special case. Another reason is that we hap-
pen to have access to the ground truth for one large content
provider C so that we can evaluate our heuristics against the
ground truth at C.

Peering can be implemented in two ways: private peer-
ing and public peering. A private peering is a dedicated
router-to-router layer-2 connection between two networks.
Private peering provides dedicated bandwidth, is easier to
troubleshoot problems, but has higher cost. Recently there
is a trend to migrate private peerings to public peerings since
the latter costs less and its bandwidth capacity is increas-
ing. Public peering usually happens at the Internet Exchange
Points (IXPs), which are third-party maintained physical in-
frastructures that enable physical connectivity between their
member networks. Currently most IXPs connect their mem-
bers through a common layer-2 switching fabric (or layer-2
cloud). Though IXPs enable physical connectivity between
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Figure 7: Projection of the number of peer ASes of a
content provider and comparison with ground truth.

all participants, whether to establish BGP peering sessions
on top of the physical connectivity is up to individual net-
works. It is possible that one network may only peer with
some of the other participants in the same IXP.

Large content networks are a special case of networks
that usually engage in heavy public peering at IXPs. These
networks usually have a small number of downstream cus-
tomers and a small incoming/outgoing traffic ratio. Since
their main business is not to provide transit but rather to en-
able access to their content, these networks usually have a
very open peering policy, peering with whoever wants to
peer with them. These policy has two benefits, first by hav-
ing direct connection with peers they speed up the content
delivery and second they save on traffic sent upstream (re-
ducing their Internet access cost).

We now develop a method to infer the public peers of
a given content provider C, for which we obtained ground
truth information after conversations with its network oper-
ators, who also disclosed that C peers with 80-90% of the
participants at each IXP. We assume that in each IXP where
C has presence, it connects to a fixed fraction q of the net-
works also colocated at that IXP, i.e. if C has n common lo-
cations with another networkX , then the chances thatC and
X are connected in at least one IXP are given by 1−(1−q)n.
More generally, the expected number of peer ASes of C, PC

is given by PC =
∑

i(1 − (1 − q)ni), where i represents
all networks that have at least one common presence with
C, and ni is the number of IXPs where both C and i have
presence. In our IXP data set, C has presence in 30 IXPs
worldwide, which is very close to the number that was dis-
closed to us by the operators of C. Based on the IXP data
and our above model, we plot the projected number of peer
ASes forC in Figure 7, where we also show the ground truth.
We note that our projection, given the q = 80− 90% for C,
is very close to the ground truth.

With this in mind, and given the open peering policy of
the content networks, a feasible approach to fill the missing
connectivity for large content providers would be to simply
assume they are connected to all the participants that share
at least one common IXP with them. If we follow this ap-
proach for the special case of C, we would end up with an
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accuracy of about 85%, i.e. about 15% of the peers would
be false positives. We are currently investigating different
approaches to fill the missing connectivity for other types of
ASes such as small and large ISPs.

7. CONCLUSION
Although it is generally believed that the public view misses

a large portion of AS links in the Internet topology, to the
best of our knowledge this paper represents the first attempt
to quantify exactly how much may be missing. Through the
use of a new heuristic developed in this paper, we show that
the public view is capable of capturing the full connectivity
of only 4% of all the ASes. However this low percentage of
covered ASes should be viewed together with the results re-
ported in [16], i.e., the public view is capable of capturing all
the customer-provider AS links, and most of peer links be-
tween large ISPs, in the topology over time. The bulk of the
potentially missing connectivity involves peer links bellow
the line of sight of the public view. We presented a simple
model that provides the upper bound estimate on the num-
ber of potentially missing peer links. This is only the initial
step towards filling the missing gaps in the AS maps widely
used by the research community and should be viewed as a
stimulus towards a more comprehensive approach, including
new inference techniques that do not rely uniquely on infor-
mation provided by a small set of vantage points, and new
modeling that takes into consideration AS’ economic incen-
tives.
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