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ABSTRACT
A public key verification system for the global Internet has
long been thought of as prerequisite for enhancing Inter-
net security with cryptographic protections. However, af-
ter years of efforts by numerous groups, such a facility re-
mains absent in the operational Internet. In this paper, we
formally define a novel concept of Public Data, and through
the design of a system called Vantages we describe how we
can leverage the concept of Public Data to develop a pub-
lic key verification system for the global Internet. More
specifically, the Vantages system is designed to solve the
DNSSEC key learning problem. As of the writing of this
paper, DNSSEC is in the verge of wide deployment and is in
desperate need of an operationally realistic key learning sys-
tem that allows DNS resolvers to obtain and verify public
keys known as DNSKEYs. We further demonstrate the im-
provement that Vantages provides over DNSSEC’s native
key verification by formally quantifying each of them and
empirically measuring their effectiveness.

1. INTRODUCTION
Cryptography can provide effective security protec-

tions for critical Internet protocols, and most crypto-
graphic system designs require an effective way to learn
and verify public keys. Thus, a key verification system
has long been thought of as a prerequisite for adding
cryptographic protections in the Internet. Unfortunately,
such a facility remains absent in today’s operational In-
ternet.

Most existing designs use conventional cryptographic
system constructs such as a Public Key Infrastructure
(PKI) as the basis for key verification, but the lack
of success of any such system suggests that there is
a fundamental misalignment between hierarchical sys-
tems that base their trust model on a universally ac-
cepted root and the nature of Internet systems that are
composed of a large number of independent adminis-
trative organizations. Specifically, [22] details various
key verification systems deployed in the Internet to-
day, including SSL [28] and PGP [30], and outlines a
few fundamental challenges in managing trusted keys
in Internet-scale systems. All the evidence shows that

we need to take a fundamentally different approach that
embraces the properties of Internet systems as first-class
design principles.

In this paper, we first describe the few fundamental
properties of Internet-scale systems, and then use the
original DNS Security Extensions (DNSSEC) [6, 8, 7]
design as a concrete example to explain how these es-
sential Internet properties invalidate designs that take a
hierarchical PKI approach. We then introduce a novel
concept called Public Data and describe how one can
verify the validity of Public Data in the absence of prior
established cryptographic trust. Based on the concept
and properties of Public Data, we design a system called
Vantages that can provide key verification for DNS re-
solvers that are using DNSSEC. At the time of this
writing, DNSSEC is on the verge of being globally de-
ployed, but faces a major obstacle of a broken hier-
archical key verification system as originally designed.
We use this difficulty as an opportunity to demonstrate
the effectiveness of Vantages on an actual Internet-scale
system.

We have built an implementation of Vantages and
are running it in our labs as a core service. In order
to evaluate its effectiveness, we use DNS resolver traces
taken from several universities and emulate large-scale
attacks against an emulated Vantages deployment. We
then use empirical metrics defined for DNSSEC in a
previous work [24] to quantify Vantages’ deployment.
Finally, we use these metrics to present a side-by-side
comparison of Vantages to DNSSEC’s original key ver-
ification design so as to quantify the improvement pro-
vided by Vantages.

The remainder of this paper is organized as follows.
Because Vantages directly addresses DNSSEC’s key ver-
ification, Section 2 provides an overview of DNSSEC’s
design and explains the mismatch between that design
and the essential properties of the global Internet. Sec-
tion 3 formally introduces the Public Data concept. In
Section 4 we describe Vantages as a system and detail
relevant points of its implementation. Next, in Section 5
we formally define metrics to assess a Vantages deploy-
ment. Based on that, in Section 6 we evaluate Vantages’
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Figure 1: Using the root zone’s key as a trust anchor

(T a) resolvers trace a “chain of trust” down the DNSSEC

hierarchy to any zone.

performance in face of emulated attackers, and finally
we conclude in Section 7.

2. BACKGROUND

2.1 DNSSEC
The Domain Name System (DNS) maps hostnames

such as www.ucla.edu to IP addresses and provides a
wide range of other mapping services ranging from email
to geographic location. In this section we introduce a
basic set of DNS terminology which is used through-
out the text, including resource records (RRs), resource
record sets (RRsets), and zones, followed by an overview
of the DNS Security Extensions.

Security was not a primary objective when the DNS
was designed in mid 80’s and a number of well known
vulnerabilities have been identified [10, 9]. DNSSEC
provides a cryptographic solution to the problem, which
seems pretty simple and intuitive. To prove that data
in a DNS reply is authentic, each zone creates pub-
lic/private key pairs and then uses the private portions
to sign data. Its public keys are stored in a new type
of RR called DNSKEY, and all the signatures are stored
in another new type of RR called RRSIG. In response
to a query, an authoritative server returns both the re-
quested data and its associated RRSIG RRset. A re-
solver that has learned the DNSKEY of the requested zone
can verify the origin authenticity and integrity of the re-
ply data. To resist replay attacks, each signature carries
a definitive expiration time.

In order to authenticate the DNSKEY for a given zone,
say www.ucla.edu, the resolver needs to construct a
chain of trust that follows the DNS hierarchy from a
trusted root zone key down to the key of the zone in
question (this is shown in Figure 1). In the ideal case,
the public key of the DNS root zone would be obtained
offline in a secure way and stored at the resolver, so
that the resolver can use it to authenticate the public
key of edu. Then, the public key of edu would then be
used to authenticate the public key of ucla.edu.

There are two challenges in building the chain of
trust. First, a parent zone must encode the authen-

tication of each of its child zone’s public keys in the
DNS. To accomplish this, the parent zone creates and
signs a Delegation Signer (DS) RR that corresponds to
a DNSKEY RR at the child zone, and creates an authen-
tication link from the parent to child. It is the child
zone’s responsibility to request an update to the DS RR
every time the child’s DNSKEY changes. Although all
the above procedures seem simple and straightforward,
one must keep in mind that they are performed manu-
ally, and people inevitably make errors, especially when
handling large zones that have hundreds or thousands
of children zones.

Moreover, the parent and child zones belong to dif-
ferent administrative authorities, each may decide in-
dependently is and when they turn on DNSSEC. This
leads to the second and more problematic challenge. If
the parent zone is not signed, there is no chain of trust
leading to the child zone’s DNSKEY. This orphaned key
effectively becomes an isolated trust anchor for its sub-
tree in the DNS hierarchy. To verify the data in these
isolated DNSSEC zones, one has to obtain the keys for
such isolated trust anchors offline in a secure manner.
DNSSEC resolvers maintain a set of well-known “trust-
anchor” keys (T a) so that a chain of key sets + signa-
tures (secure delegation chain) can be traced from some
T a to a DNSSEC key K lower in the tree. The original
DNSSEC design envisioned that its deployment would
be rolled out in a top-down manner. Thus only the root
zone’s K would need to be configured in all resolvers’
T a sets and all secure delegations would follow the ex-
isting DNS hierarchy. However as of this writing, the
root zone is not signed, and it is unclear when it will
be. Moreover, many of the Top Level Domains remain
unsigned. Without the root and top level domains de-
ploying DNSSEC (as is the case today) there could be
potentially millions of isolated trust anchors. In fact
various approaches have been proposed for securely ob-
taining these trust anchors.

As a result of this problem, the DNSSEC community
has begun investigaing how to augment the DNSSEC
secure delegation hierarchy with systems call Trust An-
chor Repositories (TARs). These are systems whose de-
signs vary quite widely, but whose goals are to help re-
solvers learn the public keys (or trust-anchors) for zones
without needing the secure delegation hierarchy. Thus,
the DNSSEC community has identified the key learn-
ing problem in DNSSEC’s design as a major problem
and it remains an area of intense investigation at the
time of this writing. The various approaches proposed
have been discussed on the DNSSEC Deployment Ini-
tiative [1] mailing lists, and a description of open issues
and further comparison and taxonomy of approaches
can be found on our website [5].

2.2 Internet-Scale Requirements
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In this work we employ the term “Internet-scale” that
was defined in previous work [24]. We to mean any sys-
tem that meets the following four requirements: First,
the system must scale to large number of elements. Sec-
ond, the system must be deployed across multiple inde-
pendent administrative domains. In other words, dif-
ferent operational entities operate their own part of the
system and interact with each other to create the global
system. Third, the system must allow local policies. In
other words, each administrative domain is able to de-
cide for themself with whom they will interact. Finally,
the system must survive and continue to operate in the
presence of constant misconfigurations, errors, and at-
tacks.

Thus we consider that even very large systems that
are deployed under a single administrative authority are
not Internet-scale systems (as defined above) since they
do not need to address the complexity and in particular
conflict of interests caused by different administrative
domains, local polices, and errors. Similarly, systems
that have distributed administration but lack large scale
or local policies are not Internet-scale by our definition.
We only call a system Internet-scale if it has all of the
four conditions above.

Examples of prominent Internet-scale systems include
the Border Gateway Protocol (BGP) [26] and the Do-
main Name System (DNS). These systems have sus-
tained the Internet as core protocols for decades and
have the above properties. BGP has a large number
of links and routers, is deployed across many distinct
Autonomous systems, each system sets its own local
polices, and the system as whole functions despite the
fact that every day there is some router somewhere that
suffers from a misconfigurations, error, or attack. Sim-
ilarly, DNS has vast numbers of resolvers, caches, and
servers, is deployed across independent DNS zones, each
zone controls polices ranging from dynamic update rules
to access rules, and again there is always some cache,
resolver, or server that is suffering a misconfiguration,
error, or attack.

In contrast, DNSSEC follows a more traditional model
of hierarchical key verification. This is similar to a PKI
in that all users must begin by trusting a pre-specified
root. Next, any break in the delegation chain (due to
misconfigurations or disynchrony) breaks the native de-
sign’s key verification.

3. LEVERAGING PUBLIC DATA
As we argued earlier, cryptographic protections must

have some means to validate public keys, yet the tradi-
tional PKI designs are infeasible in Internet-scale sys-
tems. To deploy cryptographic protections such as DNSSEC
and other systems in Internet, we need a way to obtain
valid public keys in the absence of a classical PKI that
starts with a central authority. Toward this end, we

have developed a new approach that uses the concept
of Public Data as its foundation. The result allows us
to extract valid data in the presence of adversaries and
in the absence of pre-existing cryptographic systems.

To define this new concept of Public Data and demon-
strate its power and usefulness, we define three proper-
ties that are required for data to be considered Public
Data and discuss this in Section 3.1. In Section 3.2,
we reason why meeting these 3 properties can give ro-
bust validity in the absence of cryptographic verifica-
tion. Section 3.3 discusses how this might be achieved
and leads to our system implementation, called Van-
tages.

3.1 Public Data
We begin the discussion by considering some exam-

ples of possible Public Data. In one example, news
posted on the New York Times website can be consid-
ered as Public Data because it is accessible by anyone
with an Internet connection, and it is indeed accessed
by large number of people daily, i.e. it is widely dissem-
inated. But what if a piece of news was posted on the
NYT website by a hacker and removed after only a few
minutes? Does this still constitute Public Data? Does
the persistence of the data make a difference in whether
it is considered to be Public Data?

Our first objective is to offer a simple but also rigor-
ous definition of Public Data. Using this definition, we
can apply a clear unambiguous rule to declare data as
public or not. In addition, a rigorous definition helps us
later to evaluate the degree of trustworthiness of Public
Data in the validation of critical information.

Definition of Public Data: a piece of data is consid-
ered to be Public Data if and only if

• The data is accessible to any and every user who
wants to access it;

• The data is persistent; and

• The data approaches a consistent value the num-
ber of distinct paths that can used to learn the
data approaches infinity.

The first requirement is intended to capture the idea
that Public Data is available to the public. Our def-
inition only requires that users in general can access
the data. Note this requirement allows us to exclude
special cases such as local restrictions and filters that
hinder the accessibility by some particular users. It also
allows us to exclude transient unavailability due to net-
work failures that can create conditions where some set
of users cannot access the data. The fact that some
groups of users may be blocked from the data does not
change the public property of data itself.

The second requirement captures the notion that once
data becomes publicly accessible, it stays public. This

3



does not preclude posting updates and modification to
the data, but the old value remains accessible. The
persistency of Public Data also has important implica-
tions for nonrepudiation and we will make use of this
fact later in both the definition of our system and the
Vantages design.

Finally, the third requirement is that as the number
of independent paths grows large, a consistent value of
the data will emerge. By definition, the value of Public
Data converges toward a consistent value if one could
observe the data from an infinite number of independent
paths.

These three properties define what it means to be
Public Data. Clearly, not all data will have these prop-
erties. However, we will show that data which has these
properties can be validated without assuming the exis-
tence of cryptographic PKI.

3.2 Validating Public Data
The intuition behind validating Public Data can be il-

lustrated with an example. Currently, the “.se” ccTLD
chooses to post their DNSSEC public key in one of the
country’s leading newspapers. The paper is accessi-
ble to a generic user. The paper persists in archives
and for all practical purposes, the data persists. Now
suppose the same public key was also posted in not
just one newspaper, but in the top 10,000, or even top
10,000,000, different newspapers. One cannot guaran-
tee that no one will publish a newspaper with an in-
valid copy, but note also that the true owner of the key
can also see the value published in the paper, and be
able to raise a flag in the case the value is incorrect.
As the number of distinct channels reporting the same
consistent public key approaches a very large number,
one’s confidence in the validity of the public key also
approaches 100%.

We make three observations on the definition of Pub-
lic Data. First, the three requirements are defined in
terms of system properties, i.e. the accessibility, persis-
tency, and independent access channels are the proper-
ties of the system that hosts the data. We are trying to
derive data validity based on these system properties,
instead of cryptographic verifications.

Second, as system properties, although the above def-
inition is theoretically precise, it has obvious practical
limitations. In particular, persistence over time needs
some notion of practical bound in any real system. Con-
tinuing the newspaper example, it is unlikely, nor it is
useful, to be able to access the copy of the newspa-
per thousands of years from now. Similarly, there are
obviously not an infinite number of papers that could
publish the key.

The third observation is derived from the first two:
given Public Data is defined by system properties, and
system properties have varying degree of conformance

and practical limitations, the validity of Public Data
may not necessarily be stated as either black or white,
or absolutely valid or invalid as a cryptographic system
does.

3.3 Systems to Validate Public Data
There may by a number of ways by which Public Data

can be validated to various degree. In this work we
present one candidate approach to verify Public Data.
However, first we need to introduce the notion of an
observer of the Public Data. The observer has some
location (or more precisely vantage point) within the
network and we refer to an observer as vantage vk. The
objective is to learn the value of some Public Data item.
We assume the data item is available from any source
si from the set of all sources si ∈ S and the actual value
of the data item is dg.

Next, we consider an adversary Eve whose attack
model is to trick vk into believing de is the proper value
instead of dg. In order to do this, Eve must insert de

along the network path between the vantage vk and its
chosen data source si. If one simply considers a path
to the data, the chance of success is entirely dependent
on the chance that Eve is on the path. Note Eve may
control some node or link on the path to si or may con-
trol si itself. To exploit the notion of Public Data, the
user attempting to learn the data should obtain obser-
vations from not just one vantage, but several vantages
that they trust (friends). We can see that the set of
vantages and aggregate observations of the Public Data
items is critical. Thus, we define each user’s set of van-
tages as their Community of Trust. As the number of
vk ∈ V with non-intersecting paths → ∞, the number
of paths that Eve must compromise in order to cause
damange without being noticed →∞.

The currently deployed Vantages system, discussed in
the next Section, takes a very aggressive view of whether
the numerous different observations are converging to-
ward a consistent view. In this aggressive version, if any
vantage is able to report the correct value dg it will be
seen as conflicting with the de value seen by other van-
tage(s). This formalization follows the logical method
of distributed consistency checking that was originally
tested and deployed in a well known and widely used
Monitoring Tool [4]. One useful side effect of the public
nature is that since data is verified through (essentially)
taking measurements, the approach lends itself to ease
of deployment and quantifiable results, as we will see
more of in Section 5.

4. THE VANTAGES SYSTEM
The Vantages system uses the verification properties

of Public Data to verify DNSKEYs for DNS resolver op-
erators. In addition, Vantages’ design embraces the re-
quirements of Internet-scale systems so as to ensure its
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Figure 2: This figure highlights the overlapping COTs of

three Vantages (v) that share some friends with each other.

operational relevance.
The Community of Trust (COT) concept in the def-

inition of Public Data specifies that a set of vantages
that can act as friends and cooperate to verify public
data. However, in a real system, not all parties will
want to communicate with or trust each other. In fact,
it is likely that there may be overlapping networks of
people interested in trusting each other. A system im-
plementation has to address the reality that trust is not
transitive and a user may not trust the friends of their
trusted friends (Figure 2). Furthermore, the number of
friends describes how many paths can be used to reach
data, and in a real system this will clearly not approach
infinity.

In addition, DNS resolvers do not necessarily query
the same set of DNS zones, and therefore do not all look
at the same values. It is unreasonable for resolvers that
belong to different authorities prompt each other to per-
form additional DNS queries. Further, when different
resolvers do query the same zones, they will not nec-
essarily do so at the same time. Thus, a system must
consider issues of data-overlap and the rate at which
data may have changed.

Another relevant issue that arises for DNSSEC is that
some data owners serve their DNSKEYs over multiple pro-
tocols. For example, there is a growing practice for
zones to serve their keys on web pages in addition to
serving them from DNS name servers. This allows data
to be checked for consistency across different types of
protocols as well as just network vantages.

Finally, it is important for vantages to be sure that
data they have received from each other was not spoofed.
When a vantage considers an observation from another
vantage in the COT, it must be certain that the data
has not been spoofed. Moreover, to meet the Public
Data requirement of nonrepudiation Vantages must en-
sure that once a Vantage has observed data it must that
any other vantage can always prove that observed data

existed (even if it is no longer served).

4.1 Design
Vantages meets its design goals with the following

basic building blocks: i) each user of the Vantages sys-
tem runs a daemon that is a single Vantage point, ii)
COTs are implemented as a set of peer-to-peer Van-
tages that form overlapping communities of indepen-
dent friends, iii) it uses an expressive verification tax-
onomy for DNSKEYs, iv) it has the ability to take data
from a variety of sources and protocols, and v) it has
the transparency to show how unprocessed data is con-
verted into usable DNSKEYs,

Multiple Vantage Points: After processing data
into DNSKEYs, Vantage daemons check the consistency
of the keys with their list of trusted friends (remote
Vantage daemons). Having multiple views (or vantages)
of the same DNSKEY is the primary mechanism that Van-
tages uses to do its verification. The result is that hav-
ing a trusted set of friends at different points in the
network fulfills the Public Data requirement of having
multiple paths. The actual mechanism to spoof DNS
resolvers has been extensively discussed in the litera-
ture [10, 9, 23], and is beyond the scope of this paper.
The enlistment of community members as pollers is a
notable contrast to previous distributed key verification
systems [4, 29] in which users must rely on a 3rd party
infrastructure. The importance of this contrast is that,
unlike other approaches, Vantages’ protections do not
have the prerequisite of a “trusted” 3rd party. Thus,
Vantages’ trust model is dictated by its operator’s de-
cision of whom she will configure as friends.

Vantages is both flexible and easily configurable and
its design goal is to let operators use real-world trust
when deciding who to configure as friends. This is a no-
table contrast to self-organizing peer-to-peer networks
like [14, 27, 20, 21]. The success of these networks
comes (in large part) because of their ability to scale
and self-organize. However, because of their anonymous
nature, the peers in these networks can be arbitrarily
malicious to each other. This can result in peers sending
erroneous data (called pollution [15]) or even attacking
each other [19, 18]. This has not abated their success
because users rarely trust these open networks to pro-
vide them with important transactions like banking or
e-commerce. By contrast, DNS is an integral part of es-
sentially all Internet activity, and allowing anonymous
peers to influence security decisions should be a decision
left to each operational group, rather than mandated by
a system design. Thus, Vantages makes the decision of
whom its daemons can become friends a user-specific
attribute.

However, this is not to imply that identifying friends
is challenging. Many DNS zone operators already do
this when following operational best-practices and set-
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ting up secondary name servers in remote networks.
Additionally, many operators meet each other at oper-
ational conferences such as NANOG [2] and RIPE [3].
The operational community is rife with opportunities
for operators to aid each other in such a lightweight op-
eration and we anticipate that sites like [4] will act as
open Vantages friends for operators who want to use
them.

Verification: When querying a friend, Vantages does
not expect that the remote daemon will necessarily have
previously queried for the DNSKEYs in question. In fact,
the opposite is often the case, or if the friend does have
the data it may be too old to rely on. In these cases,
Vantages can still proceed. Stale data can often be rec-
ognized by using the existing inception and expiration
dates on DNSKEYs’ signatures.

The definition of Public Data uses the notion that
as the number of paths approaches infinity, the consis-
tency reaches its absolute maxima, and data can then
be verified. As a real system of friends, Vantages will
not approach this number of paths. Therefore the sys-
tem uses available evidence and a classification scheme
called CPUC to classify DNSKEYs into one of four exclu-
sive states: The first state is Confirmed, and it indicates
that no conflicting values for the DNSKEY were seen over
any protocol or from any friend, and at least a threshold
number (n) of friends have also seen the same value for
the key. The second state is Provisional, and it means
that a key was seen by other friends, but the number of
friends is less than the configured threshold of n. The
third state is Unknown, and these are keys which Van-
tages can provide no protection for because they have
not been seen by any friends. Finally, the last state is
Conflict, and this state is an alert that either a conflict-
ing set of keys were seen over different protocols or from
any friend. The main benefit of the CPUC scheme is
that it is an evidence-based verification scheme that lets
end-users specify their own local policy of which states
qualify a key as “verified.”

Diverse Protocols: Vantages collects each of its
DNSKEYs via any combination of DNS queries, HTTP
or HTTPS requests. This list of protocols was chosen
based on the current DNSSEC operational practices. It
has become an operational convention, when construct-
ing a trust-anchors file, for operators to augment their
DNS lookups with DNSKEYs that are served from zones’
web pages (where available). Vantages takes this a step
further and automates this process. Thus, each Van-
tage daemon may either collect its DNSKEYs from just
a single source, or from multiple sources. In order to
allow operators to specify data sources in a general way,
data sources are specified via standard URLs [12, 17].
In addition to just Public Data such as DNS and HTTP,
users can advertise keys that they own via local attesta-
tions (specifying a local non-public data source). This

Figure 3: Vantages’ dashboard admin page

allows zone owners to specify which DNSKEYs they are
authorities for so that their friends (who already trust
the owners as Vantage-friends) can bootstrap each oth-
ers’ DNSKEYs.

Data Provenance: Vantages implements and shares
the data provenance of its DNSKEYs with friends so that
the origin source that friends have learned keys from
is transparent to users. This level of transparency al-
lows operators to accept or reject each others’ Vantage
data based on its original source, and/or scraping. For
example, a Vantage operator may decide not to trust
anyone’s manual attestations or may blacklist certain
TARs. This configuration simply uses the provenance
of all remote key looks to prune keys from those data
sources.

4.2 System Implementation
Vantages is a fully implemented system that is de-

ployed and running in several research labs, and is being
evaluated at other operation centers. It is implemented
as a community of individual daemons (vantaged) that
each operational group runs on one of their local servers.
These daemons accept data sources that operators want
to poll (such as web pages), and allow operators to con-
figure a list of friends that they would like their daemon
to confer with when verifying keys. The main config-
uration interface to Vantages is through a web-based
configuration dashboard that is served from an embed-
ded web server, which runs on a configurable port, and
can optionally be password protected (Figure 3).

The vantaged daemon is written in C++, and is open
source (available for download from [5]). The data it
gathers as well as its meta-data are stored in a local
SQLite database. When setting up a Vantage daemon,
the operator must specify a PGP [30] key to use as a
signing key by the daemon.

Operators can add data sources to be polled by sub-
mitting URLs [12, 17] through the administrative web
dashboard. In addition, Vantages can be configured
to use libpcap to automatically learn and poll DNS
sources of zones that the host machine sees DNS traffic
to. This option is useful when Vantages is deployed on
a machine that hosts a recursive resolver.

Configuring vantaged with friends involves bootstrap-
ping the local daemon with the public PGP key from
a friend’s daemon, the HTTP URL that their daemon
listens on, and optionally an HTTP password. This
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allows vantaged to automatically connect to, authen-
ticate with (if a password is specified), and begin veri-
fying data with that friend. The data is returned with
PGP signatures, and the friend’s PGP key can be used
to verify its origin authenticity.

The default behavior for the daemon is to poll all of
the configured data sources at fixed intervals (though
polling is randomized to avoid pattern detection). The
polling behavior has been optimized for speed so that
many thousands of DNS zones can be polled in minutes.
This allows the daemon to (if desired) maintain a very
fresh view of the sources it tracks.

After each polling cycle, the daemon contacts all of
its configured friends with the list of zone names it has
just queried. Friends then respond with the DNSKEY
values they have seen, and when the last time they saw
them. With the responses from friends, vantaged clas-
sifies each of keys with its CPUC taxonomy.

4.3 Meeting Requirements
One of the main design goals of Vantages is that it

meets the requirements of Internet-scale systems. Here
we demonstrate how it: is able to support large-scale de-
ployments, supports multiple independent administra-
tive domains, allows users to manage their own policies,
and finally is resilient against errors, misconfigurations,
and attacks.

Large-scale: Vantages scales from the perspectives
of both data owners and clients. Administrators add
data by placing it on a public server such as a web
server or a DNS name server. Clients use their own
Communities of Trust to verify data without the need
for a central authority.

Multiple Independent Administrative Domains:
Independent administrative domains are essentially first-
class elements of Vantages. Administrators can use
their own local policy of what data they would like to
publish, and how to so. In addition, clients can cull
public from any Public Data sources.

Local Trust Policies: Trust is entirely determined
by clients. They use their own view of Public Data and
those views of other vantages that they choose to trust
(not a mandated authority). In addition, because Pub-
lic Data is defined on the notion that clients determine
the trustworthiness of data for themselves, the prove-
nance1 of where data came from lets its history further
contribute to clients’ trust assessments.

Misconfigurations: Vantages deals with myriad of
misconfigurations, errors, and attacks that Internet-scale
systems face by cooperation, consistency, and compart-
mentalization. Clients join together into COTs and

1Provenance is a term often used in fields such as art to
describe the custody chain of an item. It is, increasingly,
gaining mindshare among computer scientists as a way to
describe the derivation history of data.

Verified Unverified
Valid Ideal Behavior False Negative

Invalid False Positive Intended Defense

Table 1: DNSSEC verification vs validity matrix.

cooperate with each other to form distributed vantage
points. Thus, the distributed observation points of Van-
tages are formed by those that use its data. As a re-
sult, an attack that subverts one vantage point’s view
will be detected when its data’s consistency is compared
to another vantage. Based on this, an adversary must
subvert an entire COT to pull off an successful attack.
Furthermore, in the event that an adversary is able to
subvert an entire COT, the damage is compartmental-
ized to only that COT. Other COTs are not affected.

5. DEPLOYMENT QUANTIFICATION
In this Section we propose to use system metrics to

compare Vantages’ performance against its forerunner,
DNSSEC’s native key verification. Previous work [24]
has demonstrated that DNSSEC’s classical cryptographic
deployment can be quantified, and by creating metrics
to measure the same qualities of a Vantages deployment,
we will directly compare these systems to each other.

5.1 Quantifying the DNSSEC Deployment
In [24], the authors identify three general measures

to quantify the DNSSEC deployment: availability is de-
fined as the network-level operation of DNSSEC, verifi-
ability characterizes the cryptographic design and cap-
tures how much operational effort is needed in order to
enable the deployment to offer its cryptographic protec-
tions, and validity describes how often the deployment
verifies data that is correct (versus verifying data that
is no longer valid).

The authors use these general measures to define DNSSEC-
specific metrics (on a 0 to 1 scale) and then use those to
quantify the actual DNSSEC deployment. The details
of, and the motivation for, these equations is beyond the
scope of this writing, but we provide a brief summary
of them here.

Availability: The availability metric was designed
to reflect how difficult it is for DNS resolvers to actually
retrieve the DNSKEYs from DNS in order to use them.

Verifiabilty: The verifiability metric followed DNSSEC’s
hierarchical delegation design and formalizes how much
additional configuration is needed by resolvers beyond
a single key for the DNS root zone.

Validity: Finally, the validity metric that was de-
scribed captured how frequently DNSSEC avoided giv-
ing false negatives and false positives (Table 1).

Based on the values of these metrics, the authors sug-
gest that the DNSSEC deployment can be longitudi-
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Confirm Provisional Unknown Conflict
Valid Ideal User User Bad/Safe

Behavior Policy Policy
Invalid Bad User User Good

Policy Policy

Table 2: Vantages verification vs validity matrix.

nally quantified, and they go on to propose that such
a technique should be useful to other types of crypto-
graphic systems.

5.2 Quantifying a Vantages Deployment
We now use these same measures to define metrics for

Vantages. Each of the metrics will also produce values
on a 0 to 1 scale.

Availability: Vantage daemons run on the same ma-
chines as resolvers and generate local trust-anchor files.
Therefore, the availability of DNSKEYs to resolvers is al-
ways 1. Any time data needs to be added or removed,
the daemon does it locally, and the resolver never needs
to conduct any network transactions.

Verifiability: Vantages’ DNSKEY verification com-
bines any knowledge of ground truth (such as the keys
for one’s own DNSSEC zone), with a the ground truth
from a user’s COT (friends’ keys), and Public Data ver-
ification. Thus, there are two types of data that must
be manually configured in order for Vantages to be able
to verify all other secure zones Zs (where |Zs| denotes
the number of secure DNS zones): local keys Kl (where
|Kl| denotes the number of local keys) and the list of
friends in the COT: V (where |V | denotes the number of
friends in a COT). We, therefore, define the verification
metric for Vantages as Equation 1.

V f = 1− |V |+ |Kl|
|Zs|

(1)

Validity: The approach that Vantages takes in ver-
ifying data is based on building up evidence. A Van-
tage derives local confidence in a key’s veracity from the
number of friends and number of different data sources
that report to see the same value. Based on this, Van-
tages uses a user’s local policy to control if an observed
key is classified as: Confirmed, Provisional, Unknown,
or in Conflict (CPUC). Based on these states users may
decide to adopt a very liberal policy and accept Un-
known and Provisional keys (those for which there is
little or Public Data), or a more conservative approach
in which only Confirmed keys are used. Table 2 depicts
the possible states of data, based on the ground truth
of being either valid or invalid.

6. EVALUATION
In this Section we both evaluate Vantages against

trace-driven emulation of attackers and quantify it against

the current native key verification system used by DNSSEC.

6.1 Threat Model
We define our threat model against Vantages as cases

in which a Vantages COT is operating properly, none
of its members is purposely serving invalid data, and
one or more external adversaries is attempting to in-
sert invalid DNSKEYs for one or more zones. This model
does not focus on insider attacks, in which one of the
members of a Vantages community becomes malicious
and serves invalid data to its friends. We leave this to
future work.

Next we sub-classify our model into two categories:
uncoordinated attacks, an coordinated attacks. Unco-
ordinated attacks are those in which an arbitrary num-
ber of adversaries individually attack a number of re-
solvers trying to spoof them into accepting invalid data.
Examples of this type of attack from the wild include
the rampant cache poisoning attack seen in the summer
of 2008, dubbed the Kaminsky Attack [13]. In these
cases, numerous uncoordinated individuals were able to
exercise a newly discovered weakness in DNS caching
behavior.

In contrast to this, we define coordinated attacks as
those in which a powerful adversary is able to fool a
large number of resolvers into using false keys. For ex-
ample, a powerful enough adversary might serve a spe-
cific set of bogus DNSKEYs to all of the resolvers in North
America.

In either case, the attack vector may vary without
changing the nature of the attack. For example, an un-
coordinated attack may use cache poisoning (such as the
Kaminsky attack), or it may be done by an on-path ad-
versary using a Man in the Middle (MitM) attack. For
the purposes of this analysis, the attack vector is im-
material because we presume that the attacks succeed
against individual resolvers. We focus our evaluation
on the overall effect on a Vantage COT.

6.2 Setup
Current measurements of DNSSEC’s deployment size [4]

suggest that it is still relatively small compared to the
hundreds of millions of normal DNS zones. However,
it is clearly important to evaluate Vantages’ design at
the target scale of DNS’ global deployment. Thus, ac-
tual traces of DNSSEC queries are insufficient, and we
instead turn to trace-driven emulation.

In order to emulate Vantages’ behavior we need to
model four separate degrees of freedom: multiple in-
dependent Vantage daemons installed at separate loca-
tions (alongside recursive resolvers), independent sets of
zones looked up by (and the corresponding overlap in
query habits of) separate resolvers, independent rates
at which those zones are queried and re-queried, and
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attack patterns. However, simulating all of these pa-
rameters raises the chances of introducing unintentional
experimental bias. To avoid this, we used DNS resolver
traces (taken from actual resolvers at several sites) to re-
issue DNS A record queries (the DNS lookup for an IPv4
address) from multiple distinct locations. This allowed
us to accurately emulate multiple Vantages, indepen-
dent sets of zones, actual query rates, and we were even
able to use the effects of Content Distribution Networks
(CDNs) to emulate attack traffic.

To issue queries from multiple geographically distinct
locations, we assigned each trace file to a separate Plan-
etLab [25] node. For example, if a set of A records were
logged in one trace file at a specific set of times, our
emulation apparatus would re-issue those same queries
from a specific PlanetLab node at the same frequency
so that we could record the answers seen. This allowed
us to emulate which zones a Vantage daemon would
likely query, and at what rate. Next, we observed when
different resolvers saw different A records (and the as-
sociated NS records that are generally returned with A
responses), and used the distinct values to represent
cases where different Vantages saw different DNSKEY val-
ues. This type of behavior is called geo-balancing and is
often used by CDNs to enhance performance of Internet
services, even over very small regions. This fine-grained
geo-balancing for A records serves as an excellent be-
havior to represent uncoordinated attacks, because it
is precisely the way we would expect an adversary to
behave in relation to DNSKEYs2.

In addition to geo-balancing A records, some CDNs
geo-balance name server (or NS) record sets as well.
When these NS sets vary, they tend to be consistent
across large regions. For example, querying “mail.
yimg.com” reveals that Akamai [16] acts as their CDN,
and in many locations around the world their NS set
is “n0g.akamai.net,” . . . “n8g.akamai.net.” How-
ever, in China the NS set served differs: “gtm1.glb.
cn2.yahoo.com” . . . . We use these cases to represent
coordinated attackers who have the ability to spoof en-
tire regions of the Internet, but not the entire World.

6.3 Trace Results
The data used in our evaluation of Vantages came

from four separate computer science departments at
major Universities. DNS traces were captured at each
department’s set of recursive resolvers for approximately
one month. From these traces we extracted the query
time and the domain name being queried.

In order to evaluate Vantages’ behavior with larger
communities, each of these traces was broken into smaller
non-overlapping five day traces. This technique (de-
scribed in [11]) provided twenty separate sets of DNS

2This would be similar to the large-scale uncoordinated at-
tacks like the Kaminsky cache poisoning attacks [13].
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of names

queries and timing between the queries. Next, we se-
lected twenty distinct PlanetLab nodes and assigned
each node a trace file. Four nodes were in China, nine
in Europe, three in Japan, one in Korea, one in the
Middle East, two in South America, and five in North
America. Starting at a common time, each PlanetLab
node replayed the five days worth of queries from its
trace, preserving the query order and timing found in
the original trace. Each node represents one Vantage
daemon in the following analysis.

Since Vantages relies on its Community of Trust mem-
bers to verify each other’s query results, it requires some
degree of overlap in the zones each Vantage queries.
Popular zones will be queried by many Vantage dae-
mons. Unpopular zones may have too few diverse queries
to make a strong claim about keys validity. Figure 4 di-
vides the domain names found in our query sets into
three buckets. The first bucket has 231,240 domains
that were rarely queried. The middle bucket (number
two) has 43,620 domains that were queried with moder-
ate frequency. The final bucket has 6,576 domains that
were the most frequently queried. We introduce this di-
vision in order to demonstrate that Vantages performs
better on more popular domains.

Our results focus on the effectiveness as viewed from
a single Vantage’s daemon (a driving-trace). Due to
space restrictions we limit our presentation of the re-
sults to one arbitrary driving-trace. This trace repre-
sents an “average” example (neither the best nor the
worst performer).

We noted in Section 4.2 that Vantages’ CPUC tax-
onomy classifies keys as confirmed after n friends see
consistent values (with no conflicts). In this evaluation
we set n = 3, and in a case where a COT has fewer
than three Vantage daemons, a record is confirmed if
all the other daemons saw the same value. In addition
we adopt the conservative policy that if a record is ei-
ther confirmed or in conflict we say that Vantages has
declared the record to be actionable. When names are
provisional or unknown, Vantages does not have enough
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(a) Performance with all keys from all buckets.
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(b) Performance with keys from buckets two and three.
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(c) Performance with keys from bucket three only.

Figure 5: Impact of COT size in uncoordinated attacks.

information to be authoritative about them.
Figure 5 illustrates Vantages’ performance under un-

coordinated attacks as a community grows from one
friend to the full list of nineteen. This figure illus-
trates that the number of other Vantage daemons in
a community is initially a critical factor. In the tran-
sition from one to three, we can see that the number
of confirmed keys and the actionable percentage drops
before rising again. This pattern indicates that with an
insufficient number of Vantage daemons in the Commu-
nity of Trust, a Vantage succumbs to attacks and con-

firms keys that are actually invalid. In fact, this ver-
ifies the notion that without enough paths, Vantages
cannot use the Public Data concept to properly offer
protection. However, the emulation indicates that as
the community grows in size and diversity, Public Data
becomes effective. After reaching a size of six, Van-
tages converges and the attacks have all be detected.
Even for unpopular zones, Vantages is able to classify
roughly 75% and almost 80% of the zones as actionable
(Figures 5(a) and 6(a) respectively). Furthermore, as
we narrow our focus on the most popular keys (bucket
three), the percent of keys Vantages classifies as action-
able approaches the high 90s. This is in stark contrast
to DNSSEC, which is only able to verify any keys that
have a delegation hierarchy leading to them. Previous
work [24] has reported that only about 3% of DNSSEC
zones have delegation chains leading to them.

It is noteworthy that having six friends is not a special
number, and that different attacks and different query
patterns may need more or less overlap. Nonetheless,
this set of traces show that a Community of Trust with
size as small as six can be sufficient.

Figure 6 depicts coordinated attacks on Vantages and
its resulting performance. As under the uncoordinated
attacks using the same traces, Vantages converges after
six Vantage daemons have been added to the Commu-
nity of Trust. Because of the way coordinated attacks
were modeled, there are far fewer of them than the un-
coordinated attacks above, and the figures show that a
much greater number of keys are confirmed because of
this. However, one can see that Vantages’ actionable-
rates exceed those from its uncoordinated performance.
The reason for this is that while the first few Vantage
daemons can be in the same geographic region, adding
just one node who is beyond the coordinated attacker’s
control completely overcomes the attack. Thus, a coor-
dinated attack can be viewed as being more brittle (in
some ways) than the uncoordinated maelstrom.

Once again, we can see that Vantages performs better
when protecting keys from bucket three. We take from
this a broader lesson: those keys that a community uses
more often are more vital to protect. Thus, the simple
fact that they are in use more creates a greater assur-
ance that Vantages can verify them. By contrast, when
a user visits a new zone for the first time and no one has
previously queried it, there are no hard assurances that
the key returned is valid. However, there is an equally
small chance that an adversary will know when to spoof
that key, and even if the key gets spoofed, Vantages will
only classify it as unknown.

One could speculate that provisional keys should be
included as well or more complex policies can be in-
troduced for accepting these keys. Based on Vantages’
design, however, this is a local policy decision, and op-
erators can choose for themselves. But given the solid
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(a) Performance with all keys from all buckets.
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(b) Performance with keys from buckets two and three.
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(c) Performance with keys from bucket three only.

Figure 6: Impact of COT size in coordinated attacks.

performance of the simple policy, we leave that as future
work and this analysis considers them as unactionable.

6.4 Quantification
In the preceding evaluation, Vantages converged after

its COT grew to six friends. Due to space limitations,
we are unable to present the following analysis over the
entire spectrum of friend configurations, and limit our
quantification to a COT of size six and for zones from
bucket three.

In Section 5 we described three measures (availability,

Confirm Provisional Unknown Conflict
Valid 0.947 0.0006 0.0001 0.000

Invalid 0.0001 0.000 0.000 0.053

Table 3: CPUC during coordinated attacks.

Confirm Provisional Unknown Conflict
Valid 0.876 0.0031 0.000 0.000

Invalid 0.0001 0.000 0.000 0.12

Table 4: CPUC during uncoordinated attacks.

verifiability, and validity) that can be used to compre-
hensively quantify the deployments of both DNSSEC’s
native key verification system and Vantages’. Each de-
fined specific metrics to quantify three general mea-
sures. In the remainder of this section we present the
quantified values of the DNSSEC deployment that were
reported in [24], and contrast them to Vantages’.

We can see by inspection that Vantages’ deployment
serves keys to resolvers without the need for network
communication. Previous work showed that the avail-
ability of DNSSEC’s deployment was calculated to be
0.8 on a 0 to 1 scale, and by comparison Vantages’ avail-
ability is 1.0.

The verifiability metric for Vantages is defined in Equa-
tion 1. We note that since both traces involve the
same number of zones and the same configurations,
the expressions will be the same for both uncoordi-
nated and coordinated attacks. Previous work calcu-
lated DNSSEC’s verifiability as being V f = 0.241 on
a 0 to 1 scale. Calculating the the verifiability metric
for Vantages with six friends and one local key to add
(assuming the operator runs their own DNSSEC zone):
V f = 1− 6+1

359,573 = 0.99998.
Finally, we consider the validity metric. Previous

work used evidence of misconfigurations to indicate va-
lidity. However, in this work we calculate validity based
on emulated attacks. Thus, these values do not lend
themselves well to direct comparison. Rather, we point
out that in DNSSEC’s native design, data is narrowly
classified as either valid or invalid. In contrast, Van-
tages uses the CPUC taxonomy to allow clients the flex-
ibility to create their own policies.

In order to evaluate the validity of Vantages, we re-
quire a notion of ground-truth (to compare the system’s
CPUC values against). We approximate that by consid-
ering zones whose asymptotic state reaches either “Con-
firmed” or “Conflict” when evaluated with the full set
of nineteen friends as being in a ground-truth state. We
then compare the states of those zones when using six
friends to represent how well Vantages assessed each
zone’s validity. What we find from the coordinated and
uncoordinated attacks is shown in Tables 3 and 4 (re-
spectively).
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7. CONCLUSION
A large number of Internet protocols today utilize

public key cryptography protections, yet a global scale
public key verification system is still missing, and a fun-
damental challenge in deploying such a key verification
system is the lack of global trust. This paper takes on a
brand new approach to solve the problem: developing a
key verification system through the use of Public Data.

In this work we presented the first formal definition of
the concept Public Data. We derived this notion from
observed common practices in the Internet and formal-
ized the concept by giving it a rigorous definition. Based
on the concept of Public Data we crafted the design of
a key verification system called Vantages and used it to
address the shortcomings of the native hierarchical key
verification design in DNSSEC. Vantages can serve as
an alternate or a complementary key verification system
for the global DNSSEC rollout.

In order to demonstrate Vantages’ robustness against
attackers, we used trace-driven emulation of two forms
of large-scale attacks and, further, we have quantified
Vantages’ deployment in a way that has allowed us to
present a side-by-side comparison of it with DNSSEC’s
actual deployment.

It is our belief that the concept of Public Data pro-
vides a foundation on which brand new solutions to In-
ternet security can be developed that do not rely on
centralized authority or prior trust relations.
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