
Public Data: a New Substrate for Key Verification in DNSSEC

UCLA Computer Science Technical Report # 100020

Eric Osterweil
UCLA

eoster@cs.ucla.edu

Dan Massey
Colorado State University
massey@cs.colostate.edu

Beichuan Zhang
University of Arizona
bzhang@arizona.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

September 7, 2010

Abstract

Motivated at least partly by operational problems associated with deploying global-scale
PKIs, a growing number of alternative approaches propose to verify cryptographic keys by cross
checking their consistency from topologically distinct locations and over time. These systems
are experiencing growing operational use, but there has been no rigorous analysis to show the
advantages and limitations. This paper provides a formal model of a consistency checking key
learning and verification approach based on the concept of Public Data. Public Data offers a
probabilistic description of users’ risks based on the structure of their own deployments. A
user of this framework can provision her own Community of Trust in such a way that she can
reduce and accurately estimate the probability of being spoofed by an adversary. The results
are applied specifically to the DNS Security (DNSSEC) problem and show that after reasonable
provisioning, a user can force an adversary to pay an unrealistic cost to launch a successful
attack.

1 Introduction

Cryptography is a powerful tool in the arsenal of the security community. However, the protection
of a cryptosystem only begins after clients have securely learned and verified its cryptographic keys.
One of the most common examples of a key learning system is the Public Key Infrastructure [15]
(PKI), which is a hierarchical model that creates a very structured process for verifying keys. A
growing number of efforts aim to deploy very large-scale public key cryptography systems in the
Internet, but overall operational success has been limited [17]. One prominent attempt to deploy
such a system is the DNS Security Extensions [2, 4, 3] (DNSSEC). DNSSEC uses a hierarchical key
verification model which is similar to traditional PKIs. However, even though the global DNS root
has deployed DNSSEC recently, operational evidence [18] is still quite strong that the hierarchical
key verification model of DNSSEC is not coalescing. Roughly 98% [19] of the secure islands of
trust in the DNSSEC deployment are isolated zones that do not have a secure delegation chain
that allows resolvers to verify their keys, and many zones remain several delegations below the root
and have no incentive mechanism to coerce their parent zones to deploy DNSSEC.

Motivated at least partly by pressing operational problems, a growing number of alternative key
learning and verification approaches have begun to emerge in the literature [16, 23]. A common
theme in these systems is to verify cryptographic keys by cross checking their consistency over

1



time and from topologically distinct locations. Proponents of this approach argue that the systems
can offer a good deal of practical security and are ready to be used now to solve real operational
problems. At the same time, others view these observation and consensus based approaches as
ineffective, less than rigorous, and easy to subvert. These criticisms stem from the fact that there
has been no rigorous analysis of the effectiveness of observation and consensus-based key verification
systems.

This paper presents Public Data, the first formal model of a consistency checking key learning
and verification approach for an Internet-scale system. The Public Data framework predicates its
verification on the observation that the Internet’s topological path diversity is what offers clients
protection against an adversary, and the specific deployment provisioning that one uses is what
determines how robust their protection is. Thus, the Public Data approach can offer a probabilistic
description of users’ risks based on the structure of their own deployments. This approach gives
users the ability to tighten their own security through their operational decisions. Using DNSSEC
as the subject of our model, we apply the Public Data framework to meet the needs of an actual
Internet-scale cryptosystem. This work aims to provide a more rigorous analysis and verifies the
analysis with large-scale simulations over an Internet-scale topology. The results indicate that a
user of this framework can provision her own Community of Trust in such a way that she can reduce
and accurately estimate the probability of being spoofed by an adversary. Further, we find that
after reasonable provisioning, a user can force an adversary to pay an unrealistic cost to launch a
successful attack.

The remainder of this paper is organized as follows: we begin by describing how the design
of DNSSEC addresses key verification in Section 2. Section 3 defines our threat model. Section 4
both introduces the Public Data model, defines terminology needed for later analysis, and describes
the verification model. Section 5 presents our security analysis and Section 6 evaluates the results.
Finally, Section 7 discusses related work and Section 8 concludes the paper.

2 Background

The Domain Name System [14] (DNS) maps domain names such as www.ucla.edu to a wide range
of data including IP addresses, email services, geographic locations, and more. These names form
a tree-like hierarchical name space; each node in the tree, except the leaf nodes, is called a domain.
At the top of the tree, the root domain delegates authority to Top Level Domains (TLDs) like .com,
.net, .org, and .edu. The .com domain then delegates authority to create the google.com domain,
.edu delegates authority to create ucla.edu domain, and so forth. The repository of information
that makes up the domain database is divided up into logical name spaces called zones, which each
belongs to a single administrative authority and is served by a set of authoritative name servers.
This provides redundancy and fault tolerance through spacial diversity.

Security was not a primary objective when the DNS was designed in mid 80’s and a number
of well known vulnerabilities have been identified [6, 5]. The DNS Security Extensions’ [2, 4, 3]
(DNSSEC’s) design goal is to prove that data in a DNS reply is authentic. In order to do this,
each zone creates public/private key pairs and then uses the private portions to sign data. Its
public keys are stored in DNS records called DNSKEYs, and all the signatures are stored in records
called RRSIGs. In response to a query from a DNS resolver, an authoritative server returns both
the requested data and its associated RRSIGs. A resolver that has learned and authenticated the
DNSKEY of the requested zone can verify the origin authenticity and integrity of the reply data. To
resist replay attacks, each signature carries a definitive expiration time.

In order to authenticate the DNSKEY for a given zone, say ucla.edu, the resolver needs to
construct a chain of trust that follows the DNS hierarchy from a trusted root zone key down to the
key of the zone in question (this is shown in Figure 1). In the ideal case, the public key of the DNS

2



com

         foo.com

root
edu

ucla.edu   .
Ta

Ta

Figure 1: Using the root zone’s key as a trust anchor (T a) resolvers trace a “chain of trust” down the
DNSSEC hierarchy to any zone.

root zone would be obtained offline in a secure way and stored at the resolver, so that the resolver
can use it to authenticate the public key of .edu. Then, the public key of .edu would then be used
to authenticate the public key of ucla.edu.

There are two challenges in building the chain of trust. First, a parent zone must encode the
authentication of each of its child zone’s public keys in the DNS. To accomplish this, the parent
zone creates and signs a Delegation Signer (DS) record that is a hash (SHA-1, SHA26, etc.) of
a DNSKEY record at the child zone, and signs it with its own key. This creates an authentication
link from the parent to child. It is the child zone’s responsibility to request an update to the DS
record every time the child’s DNSKEY changes. Although all the above procedures seem simple and
straightforward, one must keep in mind that they are performed manually, and people inevitably
make errors, especially when handling large zones that have hundreds or thousands of children
zones.

Moreover, the parent and child zones belong to different administrative authorities, and each
may decide independently if and when they turn on DNSSEC. This leads to the second and more
problematic challenge. If the parent zone is not signed, there is no chain of trust leading to the
child zone’s DNSKEY. This orphaned key effectively becomes an isolated trust anchor for its subtree
in the DNS hierarchy. To verify the data in these isolated DNSSEC zones, one has to obtain the
keys for such isolated trust anchors offline in a secure manner. DNSSEC resolvers maintain a set
of well-known “trust-anchor” keys (T a) so that a chain of key sets + signatures (secure delegation
chain) can be traced from some T a to a DNSSEC key lower in the tree. The original DNSSEC
design envisioned that its deployment would be rolled out in a top-down manner. Thus only the
root zone’s key would need to be configured in all resolvers’ T a sets and all secure delegations
would follow the existing DNS hierarchy. However as of this writing, operators of large DNSSEC
TLDs (like .org) still do not have provisions for accepting and maintaining DS records from their
children zones because of the operational difficulties. A full description of these difficulties can be
found in prior work [20]. Ultimately, without a secure delegation hierarchy, DNSKEY messages can
be spoofed as easily as ordinary DNS messages.

3 Threat Model

We begin by identifying end-point participants of this system as users (such as Alice), the DNS
resolvers, and zone name servers. In this analysis we assume that these endpoints are operating
properly and truthfully. Since our goal is to verify cryptographic keys by cross checking their
consistency from topologically distinct locations, we choose to focus on the Man in the Middle
(MitM) attack.

To launch such an attack, an adversary (Eve) must be able to capture and replace data packets
that are in transit. Thus, Eve must first be able to observe these packets from a vantage that she
has access to, and must then be able to interpose in communications. For example, if Eve has

3



compromised a router in an Internet Service Provider (ISP) then she might be able to use Deep
Packet Inspection (DPI) to identify when the router is forwarding either a DNS query for a DNSKEY
or a DNS response, and would then need to replace it with an invalid value. Another example
might be if Eve is on a collision domain (such as a WiFi network or on a hub) with any IP hop
that is passing this information and she simply spoofs an answer. In this case she can passively
listen to the broadcast domain and inject her own responses. Thus, the path that communications
traverse can lead to an attack if an adversary is among the vantages the compose the path. This
is sometimes referred to as an on-path attack in the literature.

However, the work that Eve must do to successfully subvert Alice is more complicated than
intercepting a single point-to-point message. In DNSSEC, an attack is actually launched against
both Alice’s resolver and the set of all name servers that serve a DNS zone (not just one). In
other words, Eve is attacking a set of servers who can each report a zone’s genuine key. If she
spoofs just one, then Alice can detect her attack by querying the other name servers that serve the
zone. In addition Eve must also consider the operationally feasibility for her to launch a prolonged
attack. Specifically, if her attack is detected, she can expect corrective action to be taken. Thus,
Eve must consider attack scenarios in which she can subvert Alice while controlling the visibility
of her attack.

In order to simplify our model we choose to focus our analysis on DNS query response messages,
and not queries. The reason for this is that any attacks Eve can launch against queries from a
resolver can be directly modeled as attacks launched on responses from a name server. For example:

• If Eve decided to drop a query, this would have appeared the same as if she had dropped a
response message.

• If Eve replaced a query with another that elicited a different response from a name server,
then she could also just replace a response with whatever she liked.

• If Eve delayed the query, she could also have just delayed the response.

Thus, for simplicity and without loss of generality, we assume that adversaries only tamper with
DNS reply messages.

4 Public Data Model

The intuition of the Public Data model is that when a piece of data becomes widely known in
public, it becomes difficult to spoof it. If we consider a particular user (say Alice) and we allow
her to compare her own observation of a datum with observations witnessed at other topologically
diverse locations, then the can rely on the topological diversity of Alice’s witnesses to protect her
against a spoofing attack. When one considers that Eve (a MitM adversary) can only succeed in her
attack if she can convince Alice that a spoofed value is valid, then Eve’s job becomes much harder
if a datum’s genuine value is observed from very diverse (and independent) vantage points. The
following discussion illustrates the foundation of our analysis. It first outlines the basic components
of the Public Data model, and then uses them to formalize its distributed verification process.

4.1 Components

The critical components of the Public Data model are the set of clients that query for data and the
set of servers that provide data. Both clients and servers are associated specific locations in the
network, referred to as Vantages below. In addition to defining Vantages below, we also formally
define Public Data, its properties, and the types of messages exchanged in our model.

All Public Data is requested from, served from, and transferred through Vantages. We model
the Internet as a set of network vantages whose connectivity to each other can be expressed as the
graph G = (V,E). A vantage is essentially a network node at an IP address, more precisely vi ∈ V .
Examples of vantages include DNS resolvers, name servers, IP routers, etc.

4



Name
Server Svj

Resolver vi

Public Data pdi

KEY

Data di

KEY

Observation oi

Message 
mi

Figure 2: Here we can see that Data Source Svj
has a public datum pdi which represents the public

representation of di, and the time at which it was created. A resolver at vi queries for Svj ’s key and uses the
response message (which contains the current key di) to create an observation oi, which contains the time
at which vi saw the data item.

Each DNS name server is located at some Vantage and is responsible for serving a zone’s data.
Therefore, we define these as Data Sources in our model. As seen in Figure 2, a Data Source at
Vantage vj is denoted Svj . When a datum di is served from a Data Source Svj , it becomes an
immutable Public Datum, pdi = (di, tk), where di is the datum itself and tk is the inception time
of di. A Public Data Source Svj = {pd0, . . . , pdm} is characterized by its network vantage of vj and
all of the public data it has ever served1.

Data is exchanged using a message m = (di, SigK(di)) where di is an opaque data item, SigK(di)
is a signature covers di, and the signature can be verified by the crypto key K. A message mi sent
from vj to vk will traverse some single acyclic path of vantages denoted: σ(j,k) = (vj , . . . , vk).
When vantage vj receives the message, it creates an observation: oi = (vj ,mk, tl) that contains
the vantage that made it, the message, and the time at which it was received. Furthermore, if the
recipient has already learned the verifying key K, then the message’s authenticity can be checked.
While this seems like a cyclic dependency for learning and verifying DNSKEYs, it can be useful for
other communications sent by a peer vantage from whom the key has been learned out of band.
This is discussed further in Section 4.2.

Finally, we also assume that even if a server S removes one piece of data d from its currently
served set, it must be possible to prove that S served d in the past (a weak form of nonrepudiation).
This mechanism is an important part of verifying Public Data and it will help protect client resolvers
from malicious servers. For example, with this property a server will be unable issue a bogus DNS
A record and then later claim that this data was never served to a client. Note this is already a
property of DNSSEC, as all DNS record sets are sent with cryptographic signatures covering them.

4.2 Verification Processes

We begin the description of the Public Data verification processes by observing that the validity
and verifiability are distinct concepts and are, therefore, treated as such. In our model, validity is

1The physical implementation of how data is stored and where is an important consideration, but for the purposes
of clarity, we focus on the abstract model for now.

5



a notion of the true authenticity of data. To define validity, we introduce a message oracle Θ. The
oracle is always able to determine validity with 100% certainty2. For a given datum di and time
ti, valid(Θ, di, ti) = true iff 1) di came from the source it reported, 2) the time stamp ti does not
occur before the data was actually created at the source, and 3) di was still being served by the data
source at ti (i.e. it is not a replay of older data). Thus, valid() only determines if an observation
properly reflects data from a Public Data Source (this is not “ground truth” in the sense of whether
the data’s meaning holds any real-world significance). Based on this, we can define an attack as
valid(Θ, di, ti) = false.

Since clients do not have access to Θ, they are instead concerned with the verifiability of data.
A resolver at vi creates a query message mi at time t0 and sends it to a name server Svj over the
path σ(i,j). When the server Svj receives this query, it constructs a response message mj (containing
the data dk from its current pdk), and sends it back over the reverse path σ(j,i).

Our definition of verifying a data item di casts verification as a function of a continuous metric
that uses a set of observations O and user-defined threshold value p. The observations (O) are used
to perform consistency checking of the data items. Each observation in O could (for instance) be
an observation made from Alice’s vantage vi to a specific name server Svj ∈ VZ .

We can see, however, that as one adds more observations from different vantages into O there is
an increased chance that this will add paths that do not intersect with those already in O. Therefore,
adding independent paths may make the number of vantages that Eve must subvert larger too (in
order to keep verify() from converging on the valid answer)3. Thus, we define a Community of
Trust VCoT as a set of vantages (called witnesses) from which Alice can cull additional observations.
The idea is to let Alice leverage her own judgment of real-world trust in other operators, or well
known services to help add path diversity to her O. In this model we require Alice to have obtained
the public keys for these witnesses through an out of band mechanism (in order to verify messages
from them). By learning the keys from her VCoT ahead of time Alice can verify the crypto signatures
on communications with her witnesses, and rely on classical cryptography for protection of these
messages.

When Alice queries her VCoT , and some observations report different values, any datum with
greater than a p majority is chosen as the verified datum. In other words, p is the proportion of
nodes that must agree to call a data item “verified.” The specific algorithm for verify(O, p) is
described in Algorithm 1.

5 Security Analysis

Compromising routers and end hosts requires some combination of (relatively) uncommon skills,
access to people with these skills, and the means to enlist help. In our model, attacks cost resources,
which might take the form of time, money, social leverage, etc. The goal of this model is to let
users quantify their vulnerability to a MitM attack. This estimation is based on both the specifics
of their Community of Trust (VCoT ) and the zones the are querying (VZ). In other words, we want
to let Alice estimate the probability that Eve can spoof her, and how much Eve would have to
spend to do so.

To launch a successful attack, an adversary may have to target well protected vantages, and
the cost may be non-negligible. We quantify an overall cost function C(Ve, t) in terms of two
component functions: i) the cost of acquiring nodes ca(Ve), and ii) usage time ct(Ve, t). We note
that approximating the cost of this sort of activity becomes quite difficult as one attempts to make

2It is important to note that Θ is not accessible to any vi ∈ V and is only defined to disambiguate if di ∈ pdi or
di /∈ pdi.

3We note that adding observations to O does not necessarily add path independence, and we address this in
Section 5.1

6



Algorithm 1: verif(O, p): Returns a datum with higher than p proportion of agreement, or the empty
set.

begin
Input: O

Input: p

Output: dverif

dverif = ∅

/* Count of the observation seen the most frequently */
max count = 0

/* The data value with the most observations */
dmax = ∅

/* A hash of counts for each data item seen */
counts[] = ∅
foreach oi ∈ O do

/* Extract the data item contained in the observation */
di =extract data(oi)
counts[di]++

/* If this is the most popular, set as “max”*/
if counts[di] > max count then

max count = counts[di]
dmax = di

/* If max variable exceeds user-specified threshold, return it */
if max count > (p× |O|) then

dverif = dmax

end

a precise estimate. Rather than attempting to achieve this elusive goal, we present this formulation
as just a single high level candidate cost formulation, and we use it as a starting point for our
analysis.

Acquisition We define the Acquisition cost in terms of the difficulty an adversary faces in com-
promising a node, and thus increasing the spread of her attack. For example, some nodes (such
as core routers at large ISPs) may be difficult to access, and may take uncommon skill-sets to
compromise. Previous work [13] has noted the existence and nature of an Internet blackmarket
economy in which (among other things) routers are rented as a commodity. Here, it suffices to say
that specific routers at specific locations (such as the core of a very large transit ISP) may not be
for sale, or may be sold at a premium. While the level of effort needed to obtain specific routers
can vary widely with different targets, we begin with a simple generic metric as an approximation
for this difficulty.

When Eve wants to attack she intends to spoof answers between a data source Svi and a client
vj , and to do this she must control at least one vantage ve ∈ σ(i,j). In order to succeed in an attack
between the set of name servers for a zone VZ and a CoT VCoT , Eve must have a set of attack
vantages Ve that can intercept response messages.

However, discovering what nodes need to be in Ve is a component of cost too, and there can
be a cost in finding this out. For example, trying to identify the interfaces on an ISP’s router
might require social engineering, or possibly cost real money. Considering that each node in Ve

7



may have both different acquisition and discovery costs (depending on where it is, who owns it,
etc), we propose Equation 1 as our candidate acquisition cost function.

ca(Ve) =
|Ve|∑
i=0

cintr(vi) + cdisc(vi) (1)

This expression embraces the fact that each node may potentially have a different intrusion
cost cintr() and a different discovery cost cdisc(). We, therefore, suggest that it is sufficiently
nonconstrictive and high level that it can serve as a candidate representation that is even applicable
to some complex cost models.

Usage The usage portion of Eve’s cost logically models the notion that Eve may have recurring
costs to maintain her Ve, or perhaps faces a cost that accrues over time, and that these costs may
even be non-stationary (i.e. they may vary over time). For example, if Eve is snooping traffic
on a router, then that router will have to inspect its traffic (DPI). This activity will result in
increased CPU load, and she might eventually be detected when operators investigate why a router
is overloaded. Clearly this problem is more pressing on large core routers at major ISPs than in
small home offices (SOHO) routers. In this case, we make a broad generalization that Eve’s cost
is proportional to the rate of detection λdetect. Alternately, in some cases, Eve might be paying
rent for access to a router that was compromised by someone else. As above, if we make a general
assumption that each element in Ve may have a different usage cost and that this cost may even vary
over time, then we can model her usage cost between time t = 0 and time t = n with Equation 2.

cu(Ve, t) =
n∑

t=0

|Ve|∑
i=0

λdetect(vi, t) + crent(vi, t) (2)

We can see, by inspection, that as an attack is launched for a prolonged period, or as the number
of nodes needed to engage in the attack grows, the cost function does too.

5.1 The Impact of Acquisition Cost

We start our discussion of the security analysis by temporarily simplifying Eve’s attack model
slightly. We assume that Eve only needs to have sufficient spread to spoof Alice, and that the
temporal component is unnecessary.

In order for Eve to fully subvert Alice’s Community of Trust (VCoT ), she must be able to
intercept all messages between VCoT and the name servers Alice is trying to reach (VZ). From this
observation, we generalize that Eve needs to be in the position to be able to partition VCoT from VZ ,
and she would like to minimize her acquisition costs in doing so. The lower bound on the number of
nodes she needs to compromise is on the order of the minimum cut set: |Ve| = O(MinCut(vj , VZ)).
The intuition here is that Eve’s vertices must be able to disconnect (or partition) all messages from
VZ to anyone in Alice’s VCoT . For example, in Figure 3 if Alice is at vantage A and VZ = {L,M},
then her min-cut set is order 1 (if vantage F is cut then she is disconnected). However, if she adds
(say) vantage B to VCoT , then her cut set grows to the oval {F,G}. Here we note that even if VZ

grows to VZ = {L,M,N} the min-cut set remains the same. However, if Alice adds C to her VCoT

the cut set grows to the circle: {F,G,H}. Thus, the cut set may not grown every time a source or
destination is added, but sometimes it can. We define Vcut = MinCut(), and use |Vcut| as a lower
bound on the number of nodes needed for Eve’s attack to succeed.

Conversely, Alice’s goal is to raise Eve’s cost in every way she can. More specifically, her best
defense is to increase the size of her min-cut set by increasing the size and topological diversity of
her VCoT . In determining how to spend her resources, Eve faces a tradeoff between paying to learn

8



B

C

A

D

E

F

H

G

N

M

L
I

J

K

Figure 3: Here we can see that how adding either name servers or CoT members can increase the size of a
min-cut set. if Alice is at vantage A and VZ = {L,M}, then her min-cut set is order 1 (if vantage F is cut
then she is disconnected). However, if she adds (say) vantage B to VCoT , then her cut set grows to the oval
{F,G}. Here we note that even if VZ grows to VZ = {L,M,N} the min-cut set remains the same. However,
if Alice adds C to her VCoT the cut set grows to the circle: {F,G,H}.

which nodes need to be compromised in order to partition Alice from VZ (which maximizes cdisc()),
and uniformly compromising as many nodes as possible in hopes of partitioning Alice (maximizing
cintr()). Clearly, if Eve spends a lot on trying to discover which nodes to use then she may not have
enough resources to cover Vcut. We conjecture that given a fixed target of just Alice (and not her
VCoT ) Eve might map the BGP AS paths between vi and VZ , social engineer some view of intra-AS
topology of each ISP on this path, then probe and try to compromise the specific routers in each of
these ISPs. It is important to note that a heavy investment in discovering nodes (cdisc()) results in a
high cost, and a strong possibility of failure. This is because determining Internet path information
between arbitrary source / destination pairs is non-trivial, and remains an open research area even
to Internet researchers [11, 10, 7, 9, 22, 12]. Complications range from the inherent difficulty in
inferring either intra-AS or inter-AS topology, to routing path asymmetries (σ(i,j) 6= σ(j,i)), and
more. Furthermore, paths are subject to both slow changes over time and changes in bursts.

Eve’s first thought might be to focus her efforts on the upstream ISPs of VZ (the zone’s name

9



servers). However, this negatively impacts Eve in two ways: i) spending the resources on these
servers does not allow her to subvert traffic to other zones (which makes her attack very focused,
and not extensible to multiple targets), and ii) this makes her attack much easier to detect by the
zone owners. If an operator for the zone has monitoring setup for their zone (such as SecSpider [1]),
then a global attack is immediately visible and thus, much more likely to be shutdown. Clearly
this is a feasible attack, but we consider attacks in which Eve is either focused on spoofing specific
users, or at least spending her attack cost in such a way that she can be in position to attack
multiple and changing sets of name servers for one or more zones.

To illustrate our security analysis we evaluate three different classifications of adversaries: i)
General, ii) Targeted, and iii) Rank Order. Each of these adversary types is differentiated by the
way that they choose which nodes to compromise.

General: In this model Eve’s goal is to take the set of all possible vantages to compromise
(V ), and acquire as many of them as she can afford (cdisc() = 0). Of all the attack models we have
considered, we propose that this one is the most relevant to general Internet users. Here, Eve has
a general set of compromised nodes and may be focused on spoofing either a set of users (not just
Alice), or may even be performing an unstructured attack against any target of opportunity.

We observe that Eve’s chances of compromising Alice’s specific Vcut set out of all sets of possible
nodes V are the same as choosing a specific combination of r = |Vcut| elements out of a set of size
|V |:

Probability(Vcut) =

(
|V |
r

)−1

The intuition for this expression comes from the following reasoning: if there exists a min-cut set
of size r, Eve has r chances to guess which routers are in this set (out of all |V |), and she is given
no additional information, then she has an equal chance to guess this set among all other sets of
size r.

We can extend this slightly to say that if Eve has n = |Ve| choices (where n > r), then her
chances are multiplied by the number of combinations that can be made with nodes outside the
min-cut set (n− r).

Probabilitys(Ve) =

(
|V |
n

)−1

×
(
|V − Vcut|
n− |Vcut|

)
(3)

Targeted: In this case, we presume that Even has learned all of the information about the
path between Alice’s vi and VZ . Though we have mentioned that this is generally an infeasible task,
we give Eve the benefit of the doubt by assuming she has accomplished this some how. However,
in this model, as assume that Eve does not have any path information between the rest of Alice’s
VCoT and VZ . This could be because members of Alice’s VCoT may not be common knowledge, or
because it is generally unrealistic for anyone to learn this information about arbitrary paths in the
Internet.

We will show that this type of attacker has roughly the same chances of compromising Alice’s
CoT as in the General case. This observation comes from the fact that as additions to Alice’s CoT
contribute independent paths, her min-cut set grows and changes. Therefore, Eve has the same
type of moving target as in the general case, she just starts off with some good guesses.

Rank Order: Finally, we consider an adversary who chooses to spend her resources compro-
mising the largest ISPs first, in the hopes of disconnecting Alice. Here the probability of success is
related to the chance that the min-cut set is included in top n-most well connected ISPs (Vn), or
Vcut ⊆ Vn. We will show that this approach is exorbitantly expensive, and attempting it is beyond

10



the capacity of all but the most well funded adversary, and that if Alice has bolstered her VCoT

sufficiently and is querying a large zone, then it is beyond reason for any adversary to be able to
afford to successfully subvert her in this way.

5.2 The Impact of Usage Cost

When considering the likelihood that Eve will be able to spoof Alice, we observe that given sufficient
spread her ability to spoof messages to Alice is also limited by a simple temporal function of
opportunity. That is, if Alice makes an observation oi at a specific time between t0 and tn, then
Eve must have positioned her vantages and be attacking at that specific moment in the interval
T = tn − t0. From this we can say that the probability that Eve can observe and spoof a message
is a proportional to the amount of time that she spends observing Te (as seen in Equation 4).

Probabilityt(Te) ∝
Te

T
(4)

We can see by inspection that as the amount time that Eve spends in Te increases, the probability
of intercepting a message increases too. However, the cost of using the nodes in Ve increases as
well.

6 Evaluation

The goal of using Public Data to verify crypto keys is to provide a mechanism that allows users to
bolster their security through enhancing their operational deployments. In this Section we begin by
illustrating that as Alice increases her VCoT and zone operators increase their VZ , the cut set Vcut

will grow too. Then, we analyze both the probability of compromise and the progression of cost
for each of our attack classes. Due to space limitations, we focus our evaluation on the acquisition
costs and probability models, and leave the evaluation of additional usage costs and probability to
future work. We claim that this gives Eve a very large benefit, but will show that the Public Data
approach still provides very solid assurances.

We performed our evaluation using a simulated Internet-like Autonomous System (AS) topology,
in which each AS represents an ISP, educational institution, government agency, etc. This topology
was generated by the Inet Topology Generator [8]. Using a topology of 22,000 nodes (which is similar
in scale to the current Internet) we randomly chose vantages for Alice, her CoT, and for the name
servers of a target zone. We varied Alice’s CoT size (including her) from one to ten, and for each
CoT size we varied the name server set size between one and ten. This gave us 100 combinations.
We then ran ten simulation runs for each combination in which we varied the number of ASes
that Eve had acquired from one to the full 22,000. In these attack simulations, we set the cost of
compromising an AS node to be proportional to its degree (or connectivity). This is in the spirit of
larger, more prominent ASes (like AT&T, Sprint, etc) have more internal routers and more internal
path diversity. Thus, for an adversary to subvert an entire AS, she will have to secure more internal
routers. Moreover, larger ASes (such as tier-1 provides) are likely harder to crack into than, say,
smaller ISPs. Our belief is that this linear relationship between AS degree and cost is conservative
in favor of Eve.

Cut-Set Using our topology, we mapped each combination of VCoT and VZ to the min-cut set
Vcut between them. Figures 4, 5, 6 show a general trend of increase in min-cut set size as VCoT and
VZ grow. Intuitively, the min-cut set should grow as the CoT increases. By adding more witnesses
to the CoT, one gains more nodes and more paths. But note the addition of a new witness does
not add value if its paths to the authoritative servers go through the previous cut set. The figures
show how likely it is that when Alice adds a witness to VCoT , her Vcut will grow.

11



 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

Si
ze

 o
f C

ut
-S

et

Size of CoT

High, Low and Average Growth of Cut-Set Size with 2 NSes

Figure 4: This figure shows the upper bound, lower bound, and average case of the size of Vcut when
randomly choosing VCoT and VZ . Here we have the VZ size chosen to represent small zones (VZ = 2)

Cost and Probability Our approach in estimating Eve’s costs is to try and be liberal in our
beliefs. For example, in our evaluation we presume that for a certain “price” Eve can actually buy
every AS in the Internet (which we normalized from 0 to 100). That is, we plot our simulations
from one compromised AS all the way out to where every AS in the whole Internet belongs to Eve.
While we claim that this extreme is wholly unrealistic, we ultimately leave the judgment of its
believability to the reader. We simply use this extreme to illustrate the scaling properties of our
model in the presence of such an all-powerful adversary. In this way we gain a working sense for
how large Alice’s min-cut sets will need to be to overcome adversaries ranging from impoverished
to very powerful. We demonstrate this by simulating attacks and calculating the success rates of
our three classes of adversaries: general, targeted, and rank order.

Figures 7, 8, and 9 illustrate that as a General adversary, Eve’s success rate at subverting Alice
closely follows our predictions in Equation 3. We can see that if Alice’s Vcut is on the order of
size two, then Eve has a roughly linear chance of spoofing her. While this is certainly important,
we note that in Figures 4-6, we can see that Alice can generally increase her Vcut size by adding
witnesses to her VCoT . In other cases, even when Vcut is only size 6, Eve’s investments yield only
very marginal success rates until her cost approaches roughly 80% of the cost of the all ASes in the
Internet.

We next consider the Targeted adversary. Recall that she has taken the time to learn Alice’s
AS path, and compromises ASes in it, before resorting to a general attack against the rest of
Alice’s CoT. From Figures 10, 11, and 12, we can see that while Alice has a very small min-
cut set (presumably from a small CoT), Eve’s success rate surpasses our model’s predictions.
However, as Alice’s CoT grows, Eve’s chances begin to closely resemble those of a general adversary.
Additionally, we can see that even in the average case with a |Vcut| = 8, Eve’s probability of success

12



 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

Si
ze

 o
f C

ut
-S

et

Size of CoT

High, Low and Average Growth of Cut-Set Size with 5 NSes

Figure 5: These figures show the upper bound, lower bound, and average case of the size of Vcut when
randomly choosing VCoT and VZ . Here we have the VZ size chosen to represent medium sized zones (VZ =
5)

only begins to reach 25% after she has spent approximately 70% of the total cost to compromise the
entire Internet. Thus, Alice’s road to salivation, as with a general adversary, is through augmenting
her CoT.

Lastly, we examine the Rank-Order adversary. Here Eve likely represents a well funded organi-
zation. This is a crucial observation because we can see from Figures 13, 14, and 15 that the cost
to her becomes on the order of that to “purchase” the entire Internet within the first percentages
of ASes that she compromises. Thus, one must either be facing an incredibly powerful adversary
(possibly a nation-state), or an someone who has managed to permeate every AS in the world.
Moreover, we can see that if Alice has a |Vcut| ≈ 14, Eve spends 90% of the total cost of the In-
ternet before subverting Alice in more than 18% of the cases. One interesting note from this class
of adversary is the odd step-function-like behavior of the graphs. This behavior comes from the
fact that there are high degree hub-nodes (which resemble tier-1 ISPs) that seem like they should
belong to Vcut in almost any situation. However, the simulations show that with a sufficiently high
path diversity (from a large VCoT ), connectivity between witnesses in VCoT is pushed to peerings
at the edge of the network. In these cases, a brute force attack on the Internet’s core tier-1s will
still not subvert the protections of Public Data verification until quite a high cost is paid.

7 Related Work

As noted in Section 1, a growing number of systems have begun to emerge that use distributed key
learning approaches to verify cryptographic keys. While these systems include certain similarities
and differences, the fundamental approach is very consistent.

SecSpider [16] is a distributed key learning system that is designed for DNSSEC. It polls for

13



 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

Si
ze

 o
f C

ut
-S

et

Size of CoT

High, Low and Average Growth of Cut-Set Size with 10 NSes

Figure 6: These figures show the upper bound, lower bound, and average case of the size of Vcut when
randomly choosing VCoT and VZ . Here we have the VZ size chosen to represent larger TLD/root zone sizes
(VZ = 10).

DNSKEYs from several distributed vantages throughout the world, and it has been operational as a
distributed key system since 2007. In SecSpider, DNSKEYs are are archived and a full history has
been kept of keys going back to when the system first started monitoring the DNSSEC rollout in
2005. However, SecSpider does not adhere to any formal model that describes the degree to which
clients can be certain that an adversary has not spoofed its pollers.

Another operational system is Perspectives [23] which is designed to gather SSH public keys
through a set of “notary” servers, which are deployed in different locations. This system is an
on-demand system that also maintains a notion of how long SSH keys have been seen. However,
like SecSpider, Perspectives’ model does not attempt to quantify the level of trust users should
have that the keys it verifies are genuine.

One other key learning approach that is relevant is SDSI [21]. SDSI is not an operational
Internet key learning system (as those above are), but it is a framework in which the veracity of
keys can be determined through local attestations. That is, when a user decides to give trust to an
entity, that entity is then able to vouch for other keys, which allows for a grass-roots style of key
verification.

8 Conclusion

In this paper we show that one is able to cast verifiability of keys as a function of both an adversary’s
cost to compromise and the probability that she will be able to succeed in an attack. By using
topologically diverse witnesses, and a structured framework for key continuity we have created a
model in which a key’s presence as Public Data makes it, essentially, capable of self-verifying. We
presented the formulation of both a cost model and a probability expression and experimented with

14



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 2

Cost
Predicted Success Rate
Success Rate of Attack

Figure 7: The predictions from Equation 3 very closely match the experimental results for the General type
of adversary. Here we see a |Vcut| = 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 8

Cost
Predicted Success Rate
Success Rate of Attack

Figure 8: The predictions from Equation 3 very closely match the experimental results for the General type
of adversary. Here we see a |Vcut| = 8.

15



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 14

Cost
Predicted Success Rate
Success Rate of Attack

Figure 9: The predictions from Equation 3 very closely match the experimental results for the General type
of adversary. Here we see a |Vcut| = 14.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 2

Cost
Predicted Success Rate
Success Rate of Attack

Figure 10: This figure shows that for a small Vcut = 2 the Targeted adversary has a better than predicted
chance to spoof Alice.

16



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 8

Cost
Predicted Success Rate
Success Rate of Attack

Figure 11: This figure shows that with a Vcut = 8, the adversary is already significantly less likely to be
able to spoof Alice, though not quite as unlikely as predicted in the general case.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 14

Cost
Predicted Success Rate
Success Rate of Attack

Figure 12: This figure shows that for a Vcut = 14, Alice’s protection approaches the prediction of Equation 3.

17



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 2

Cost
Success Rate of Attack

Figure 13: For a Rank-Order adversary, with a small Vcut = 2 Alice falls victim early in the attack.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 8

Cost
Success Rate of Attack

Figure 14: For a Rank-Order adversary, with a Vcut = 8 Alice is very likely to still fall victim to the attack
early on.

18



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5000  10000  15000  20000  25000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Fr
ac

tio
n 

of
 R

un
s 

w
ith

 F
ul

l C
om

pr
om

iz
e

C
os

t

Number of Compromised ASes

Attack Progression with Cut-Set Size 14

Cost
Success Rate of Attack

Figure 15: For a Rank-Order adversary, with a large Vcut = 14 Eve pays a huge cost and her success is
staved off. This turns out to be because of the richness of connectivity at the edge of the network.

their accuracy using Internet-scale simulations.
Our findings are that users in this model can, indeed, defend themselves against adversaries.

By proactively seeking diverse Communities of Trust in their deployments they can greatly reduce
an adversary’s chances to spoof them. Further, our general observation from these results is that
the Internet’s densely connected and distributed topology is a crucial benefit in the resilience of
this approach. The high degree of connectivity at the edge of the network means that adversaries
who may have compromised large hubs (like tier 1 ISPs) may not necessarily be able to subvert
even moderate sized Communities of Trust. It is also noteworthy that in many Internet operational
communities there exists growing anecdotal evidence that the Internet’s edges are growing richer
in this type of connectivity, suggesting that the performance of this approach may only become
better in the future.

In the future we intend to augment this evaluation by adding in the usage cost and probability
functions (cu() and Prt()) of our model. In addition, key rollover and revocation are both important
issues. We believe that this model can fully support both of those operations by simply using
forward verification signatures (where each key signs its successor). In the future we also plan to
evolve this model to incorporate this explicitly. Finally, we have begun plans to deploy an actual
DNSKEY verification system whose design is based on this model.

References

[1] SecSpider. http://secspider.cs.ucla.edu/.
[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and

Requirement. RFC 4033, March 2005.

19



[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Modifications for the
DNS Security Extensions. RFC 4035, March 2005.

[4] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Resource Records for the DNS
Security Extensions. RFC 4034, March 2005.

[5] D. Atkins and D. Austein. Threat Analysis of the Domain Name System (DNS). RFC 3833,
August 2004.

[6] Steven M. Bellovin. Using the domain name system for system break-ins. In Proceedings of
the Fifth Usenix Unix Security Symposium, pages 199–208, 1995.

[7] Bradley Huffaker, Amogh Dhamdhere, Marina Fomenkov, and kc claffy. Toward Topology
Dualism: Improving the Accuracy of AS Annotations for Routers. In PAM 2010: Passive and
Active Measurement Conference, Zurich, 2010.

[8] C. Jin, Q. Chen, and S. Jamin. Inet topology generator. Univ. Michigan, Ann Arbor, MI,
Tech. Rep. CSE-TR-456-02, 2000.

[9] E. Katz-Bassett, H.V. Madhyastha, V.K. Adhikari, A. Krishnamurthy, and T. Anderson. Prac-
tical reverse traceroute. NANOG, 2009.

[10] Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring link weights using
end-to-end measurements. In IMW ’02: Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, pages 231–236, New York, NY, USA, 2002. ACM.

[11] Z. Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. On as-level path inference. In SIGMET-
RICS ’05: Proceedings of the 2005 ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 339–349, New York, NY, USA, 2005. ACM.

[12] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H. Katz. Towards an accurate
as-level traceroute tool. In SIGCOMM ’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, pages 365–378, New
York, NY, USA, 2003. ACM.

[13] J. Martin and R. Thomas. The underground economy: priceless. USENIX; login, 31(6), 2006.
[14] P. Mockapetris and K. J. Dunlap. Development of the domain name system. In SIGCOMM

’88, pages 123–133, 1988.
[15] Rebecca Nielsen. Observations from the deployment of a large scale pki. In 4th Annual PKI

R&D Workshop: Multiple Paths to Trust, April 2005.
[16] E. Osterweil, D. Massey, and L. Zhang. Deploying and Monitoring DNS Security (DNSSEC).

In 2009 Annual Computer Security Applications Conference, pages 429–438. IEEE, 2009.
[17] Eric Osterweil, Dan Massey, and Lixia Zhang. Managing trusted keys in internet-scale systems.

In The First Workshop on Trust and Security in the Future Internet (FIST’09), 2009.
[18] Eric Osterweil, Daniel Massey, and Lixia Zhang. Observations from the DNSSEC Deployment.

In The 3rd workshop on Secure Network Protocols (NPSec), 2007.
[19] Eric Osterweil, Michael Ryan, Dan Massey, and Lixia Zhang. Quantifying the operational sta-

tus of the dnssec deployment. In IMC ’08: Proceedings of the 8th ACM SIGCOMM conference
on Internet measurement. ACM, 2008.

[20] Eric Osterweil and Lixia Zhang. Interadministrative challenges in managing dnskeys. IEEE
Security and Privacy, 7(5):44–51, 2009.

[21] R.L. Rivest and B. Lampson. SDSI–A simple distributed security infrastructure. Citeseer,
1996.

[22] Renata Teixeira, Keith Marzullo, Stefan Savage, and Geoffrey M. Voelker. Characterizing
and measuring path diversity of internet topologies. In SIGMETRICS ’03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of computer
systems, pages 304–305, New York, NY, USA, 2003. ACM.

[23] Dan Wendlandt, David Andersen, and Adrian Perrig. Perspectives: Improving SSH-style

20



host authentication with multi-path probing. In Proc. USENIX Annual Technical Conference,
Boston, MA, June 2008.

21


