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ABSTRACT
In this paper, we return to the drawing board to rethink the
basic approach to multi-hop forwarding for highly dynamic
wireless networks. The result is Listen First, Broadcast Later
(LFBL), a surprisingly minimalist forwarding protocol. LFBL
is topology-agnostic, that is, it has no knowledge of neigh-
bors, routes, or next hops. LFBL receivers, not senders,
make the forwarding decisions, and they only keep a small,
fixed amount of state per active communication endpoint in
order to do so. As a result, there is little state to go stale, and
no pre-determined paths to be broken. Frequent topology
changes do not adversely impact performance. LFBL uses
exclusively broadcast communication for all packets, mak-
ing it a more natural fit for a wireless medium and allowing
for more flexibility in the selection of MAC layer protocols.
In addition to physical mobility of nodes, LFBL also sup-
ports logical mobility of application-level identifiers. Under
simulation, LFBL significantly outperforms AODV.

1. INTRODUCTION
Despite some fundamental differences, multi-hop wire-

less networks have typically adopted the Internet pro-
tocol stack, complete with traditional routing at the
network layer and unicast support at the MAC layer.
These networks simply swap out wired MAC and phys-
ical layers for their wireless equivalents, and traditional
wired routing protocols for their reactive counterparts.
It is a testament to the design of the Internet proto-
col stack that it can work in the foreign environment
that is a multi-hop wireless network. However, we have
returned to the drawing board to rethink how align-
ing routing at the network layer with the fundamen-
tally broadcast nature of the wireless channel, and have
found that this alignment can vastly improve perfor-
mance.

In this paper, we present the Listen First, Broadcast
Later (LFBL) protocol, a forwarding protocol for wire-
less networks that does not require a unicast primitive.
The basic operation is simple. At each hop, the respon-
sibility for forwarding decisions is placed squarely in the
hands of the receiver, rather than the sender. After re-
ceiving a packet, a potential forwarder pauses to listen

to the channel, waiting to see if a more optimal node
forwards the packet first. Otherwise, it forwards the
packet itself.

While the idea of receiver-based forwarding is not new
in and of itself (e.g., [1]), its full potential in the con-
text of highly dynamic multi-hop wireless networks has
not yet been explored. Though opportunistic routing
protocols such as ExOR [1] may take advantage of the
broadcast nature of the channel to involve receivers in
forwarding decisions, they still often rely on traditional
routing protocols and extended measurements of the
network’s static topology.

In contrast, LFBL not only completely shifts forward-
ing decisions to the receiver, but it completely does
away with the notion of routing based on the network
topology. For each end-to-end flow, potential LFBL
forwarders make decisions based on only a single scalar
value for each endpoint, capturing the distance of the
forwarding node from the endpoint. This distance can
be determined by any number of metrics, and it is ag-
nostic to the actual network topology. In essence, LFBL
removes the need for any explicit knowledge about the
network topology when calculating the cost of end-to-
end paths.

This topology-agnostic approach to forwarding en-
ables LFBL to cope with high dynamics more grace-
fully than existing routing protocols, such as the Ad-
Hoc, On-Demand Distance Vector protocol (AODV) [7].
Protocols like AODV attempt to track the state of at
least some of the links in the topology, and must recon-
figure their routes when the state of these links change.
By design, LFBL forwarding does not depend on topol-
ogy changes. Our evaluation shows that this change
enables LFBL to significantly outperform AODV in a
variety of scenarios.

The main contribution of this work is a forwarding
protocol with the following unique features:

• LFBL is topology-agnostic, that is, it has no knowl-
edge of neighbors, routes, or next hops.

• LFBL uses exclusively broadcast communication
for all packets, allowing for more flexibility in the
selection of MAC layer protocols.
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• LFBL supports mobility not only of nodes, but of
application-level identifiers as well.

2. PROTOCOL OVERVIEW
Listen First, Broadcast Later (LFBL) operates on

four basic tenets:

• Keep the absolute minimum amount of state.
As opposed to mesh networks that have a fixed
topology that they can measure and distribute in-
formation about, the topology of a highly dynamic
network is constantly changing. Any state kept
at a node will go stale quickly, and we will incur
overhead for upkeep of that state. We address this
issue by keeping the absolute minimum amount of
state required for correct forwarding behavior.

• Use data packets to distribute control in-
formation. In order to minimize collisions due
to additional packet transmissions, LFBL gener-
ates no separate control packets. Instead, a small
LFBL header is piggybacked on every data packet.

• Broadcast everything and learn from listen-
ing. In alignment with our goal of a unicast-
free MAC layer, LFBL uses only broadcast pack-
ets. Furthermore, it takes advantage of any over-
heard packet, and the control information it places
within, to maintain the small amount of state that
it does keep.

• Make forwarding decisions exclusively at the
receiver. Using the information it has gathered,
each node decides for itself whether to forward a
received packet. It does this without any explicit
coordination with its neighbors or the packet’s sender.
All signaling is done implicitly through the data
packets themselves.

2.1 End-to-End Communication
From end-to-end, communication in an LFBL net-

work is composed of two phases: a request phase and a
response phase.

The request phase is similar to route request phases in
traditional on-demand routing protocols, where (assum-
ing the requester has no prior knowledge) the requester
broadcasts a request packet that is flooded through the
network. In traditional routing, the intended respon-
der is identified by its IP address, and only the node
with that IP address may respond. In LFBL, however,
the request phase is meant to be aligned with a connec-
tion setup or discovery phase at the upper layers of the
protocol stack, such as TCP connection establishment,
name resolution, or P2P peer discovery. Thus, the in-
tended responder is identified by an identifier provided
by the application (which may or may not be an IP ad-
dress), and it is the application at the responding node

Sender
Eligible Forwarder
Ineligible Receiver

Destination

1. Distribute distance
via srcDist header field

2. Determine eligibility
based on stored distance

Figure 1: Eligible forwarders.

that decides whether it should respond to the request.
This combines two separate discovery phases into one,
reducing the number of floods required.

The response phase begins when a response reaches
the requester. In this phase, the requester and respon-
der exchange data normally, without flooding. Packets
will follow the best available path through the interme-
diate nodes based on the distances of the nodes discov-
ered through the request phase. In all subsequent re-
quest and response phases, packets are forwarded, not
flooded, unless the requester or receiver ceases receiving
packets. LFBL inserts its own header into each data
packet, which contains information used to maintain
end-to-end connectivity. This information is overheard
by all nodes in hearing distance of the active path. Any
of these nodes can potentially become forwarders at any
time without any explicit coordination or path setup.

2.2 Forwarding
In this section, we will use the terms sender and re-

ceiver only in the context of single-hop transmission and
reception on the wireless channel. We will use the terms
source and destination to represent the communication
endpoints.

As we have mentioned previously, all forwarding de-
cisions in LFBL are carried out at the receiver side.
Senders simply broadcast packets. Upon reception, a
receiver first decide whether it is an eligible forwarder
for the packet. If so, it waits for some amount of time,
listening to the channel to see if another node closer to
the destination forwards the packet. If not, the node
forwards the packet itself.

Thus, a receiver has two important decisions to make:
whether it is an eligible forwarder for a packet, and, if
so, how long to wait before forwarding it.

2.2.1 Am I an Eligible Forwarder?
Since the goal of a forwarder is to move packets to-

wards the destination, this question essentially maps to
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the question: “Am I closer to the destination than the
node I received this packet from?” In order to answer
this question, the LFBL header in every packet con-
tains a srcDist field, which contains the distance from
the source of the packet to the sender. At each hop,
a forwarder inserts its own distance from the source in
the srcDist field before forwarding the packet. Nodes
use the srcDist field to discover and update their dis-
tance from active endpoints in the network. Note that
any number of distance metrics may be used (see Sec-
tion 4.1).

Once a node knows its distance from another node, it
can use this information when forwarding packets back
towards that node. Specifically, only nodes closer to a
packet’s destination than the previous sender are eligi-
ble to be forwarders. Thus, the eligible forwarders at
each hop are those nodes who (1) received the trans-
mission, and (2) are closer to the destination. (See Fig-
ure 1.)

2.2.2 How Long Should I Listen?
Since there will generally be more than one eligible

forwarder for each transmission, the algorithm for deter-
mining a node’s listening period, where the node waits
to see whether other nodes will perform a forwarding
task, serves two important purposes: forwarder priori-
tization and collision avoidance.

Prioritization means assigning shorter listening peri-
ods to eligible forwarders that believe they are on a bet-
ter path than their neighbors between the sender and
the destination. We will discuss various prioritization
metrics in Section 4.1.

Collision avoidance simply means reducing the chance
that two eligible forwarders will choose the exact same
duration for their listening period, transmit simultane-
ously, and cause a collision. Adding a random factor to
the listening period proves to be highly effective for this
purpose according to our simulations (see Section 4).

3. LFBL IN DEPTH
This section describes the detailed operation of the

LFBL protocol. We frequently refer to the LFBL header,
a header placed in each data packet in lieu of separate
control packets. A definition of each of the fields in the
LFBL header can be found in Table 1.

3.1 Node State
One of the tenets of LFBL is to keep as little state as

possible at each node. In particular, LFBL keeps state
only about communication endpoints, never about any
intermediate nodes or any topological information. The
state that LFBL nodes do keep is described below.

3.1.1 Distance Table
The LFBL distance table is the closest analog that

seqnum A monotonically increasing sequence num-
ber assigned by the source node.

acknum A cumulative acknowledgement number
also set by the source node.

srcDist The distance between the source node and
the most recent forwarder, modified at
each hop.

dstDist The distance between the most recent for-
warder and the destination node, modified
at each hop, if known.

type The LFBL message type, which is either
request (REQ), response (REP), acknowl-
edgement (ACK), or a combined acknowl-
edgement and request (ACK+REQ).

appID The application-level identifier being re-
quested, provided, or acknowledged.

Table 1: Fields in the LFBL header.

LFBL has to the traditional routing table, in that it
maps a destination IP address to some state about that
node which is used for forwarding. However, the LFBL
distance table only ever stores exactly three values per
known active endpoint, independent of the number of
neighbors a node has, the number of paths used to reach
the endpoint, or any other topological information. For
some node N and endpoint E, these three values are:
the highest sequence number (seqnum) seen in a packet
sent by E, the distance from N to E, and the variance
of the distance from N to E.

A node N may potentially update its distance table
any time it overhears a packet being transmitted, even
if it is not the destination or even an eligible forwarder.
Upon overhearing a packet transmitted by sender S, N
first calculates its distance to the source via S. This dis-
tance, which we will call dN→S→R, is simply the sum of
the distance from S to N and the value in the srcDist

field of the received LFBL header. The distance from
S to N is determined by the network’s distance met-
ric, which may, for example, always be 1 (that is, the
hop count), or a number based on the received signal
strength. We discuss the choice of distance metric in
Section 4.1.

Once N has calculated dN→S→R, it checks to see if it
needs to update its distance table. If N does not have
an entry for R in its distance table, it simply adds one
using the calculated dN→S→R and the seqnum field in
the received packet header. If N already has an entry
for R, its behavior depends on the seqnum field in the
packet and the seqnum sR in N ’s distance table. If
seqnum is less than sR, N does nothing. If seqnum is
equal to sR, N only sets its distance to dN→S→R if it
is less than the value currently in N ’s distance table.
If seqnum is greater than sR, N sets its distance to
dN→S→R, regardless of the previous value, under the
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assumption that a packet with a higher seqnum carries
a fresher distance measurement.

Whenever N updates a distance table entry with a
new seqnum, it also adjusts its third and final value:
the distance variance. Before replacing its distance ta-
ble entry, it takes absolute value of the difference of the
old and new distances, and rolls it into a rolling vari-
ance average. The specific algorithm is the same as is
commonly used in TCP for estimating the variance in
roundtrip times [6].

Since distance table entries are meant to track only
active endpoints and are expected to go stale quickly,
they can expire. A distance table entry is erased after
it has not been updated for a configurable amount of
time.

3.1.2 Application-Level Identifier Map
This map is only used by active requesters. When a

requester receives a response for application-level identi-
fier (appID) x from a responder with IP address a.b.c.d,
it stores a mapping from x to a.b.c.d in its appID map.
Requesters store only the IP address of the most recent
responder. This allows the requester to address its next
request directly to the most recent responder instead
of having to fall back to flooding. Entries in the ap-
pID map time out after they have remained unused for
a configurable period of time, or when requests to an
IP address retrieved from the map go unanswered for a
configurable period of time.

3.2 The Request Phase
A new request phase starts when an application wants

to request some application-level identifier (appID). The
appID is placed in the appID field of the outgoing LFBL
header. If both (a) the requester has the IP address for
a previous responder in its appID map, and (b) it has
an entry for the the responder’s IP address in its dis-
tance table, it addresses the packet to the responder. In
this case, the request packet (REQ) is forwarded nor-
mally, as discussed in Section 3.3. Otherwise, the REQ
is flooded.

Flooded REQs server two purposes: ensuring that
any available responder is found, and distributing dis-
tance information so that other nodes in the network
learn their distance from the requester. This way, any
node is ready to help forward the response if need be.
In fact, this can allow the response packet to implicitly
establish multiple, disjoint paths between the requester
and the responder (see Figure 2).

To avoid collisions and ensure accurate distance mea-
surements during flooding, we use a technique inspired
by Ye et al. [8] where each node delays rebroadcasting
the flooded packet for a time period relative to its dis-
tance from the neighbor that sent the packet. We make
two minor modifications to this algorithm: first, a node

never rebroadcasts the same flooded packet twice, even
if its distance improves. Though this may result in
initially inaccurate distance measurements, it ensures
minimal overhead for flooding. Any inaccuracies will
quickly be corrected at any node that overhears the en-
suing data exchange.

Once a responder receives the REQ, it produces a re-
sponse packet (REP). In addition to application-layer
data, the REP contains the distance from the respon-
der to the requester in the dstDist field of the LFBL
header. This distance is used by intermediate nodes to
make forwarding decisions that ultimately get the REP
back to the requester (see Section 3.3). Note that, as
the REP travels, all forwarders and all of their neigh-
bors that hear the packet will update their distance ta-
bles, learning their distance to the responder (see Sec-
tion 3.1.1).

As a result, all of the nodes that forwarded or over-
heard the REP packet can serve as forwarders for future
REQ packets, without the need for any more floods. In
a reasonably dense network, there is a high likelihood
that this will make multiple paths available for the re-
quester to reach the responder. Furthermore, as nodes
move and bidirectional traffic continues to flow between
the requester and the responder, new nodes that move
into range of the current path overhear these transmis-
sions. These new nodes also update their distance ta-
bles, providing a fresh crop of eligible forwarders.

3.3 Forwarding
Once the distance tables in the network have been

populated, normal, flood-free forwarding ensues. Re-
ceivers make forwarding decisions based on their dis-
tance table and information in the LFBL headers of re-
ceived packets. Specifically, whenever a node forwards
a packet, it updates the srcDist and dstDist fields in
the LFBL header from its distance table before trans-
mitting the packet. Receiving nodes then compare these
values to those in their own distance tables as described
below.

3.3.1 Eligible Forwarders
As we briefly discussed in Section 2.2, an eligible for-

warder is any node that both receives a transmission
and is closer than the sender to the destination. Nodes
determine whether they are closer to the destination by
comparing the distance in their distance table to the
dstDist field in the received packet.

This means that the distance metric is quite impor-
tant – an overly optimistic distance metric will cause
unnecessary contention for the channel and extra over-
head due to all of the eligible forwarders. An overly pes-
simistic or insufficiently granular distance metric will
provide too few eligible forwarders, so that if the few
eligible ones don’t receive the packet, forward progress
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Figure 2: LFBL REP forwarding paths.

will stop and the packet will be lost. A pessimistic dis-
tance metric may even provide no eligible forwarders
at a particular hop if the only previously eligible for-
warders have moved. In Section 4.1, we evaluate differ-
ent distance metrics for LFBL.

Note that a node is never an eligible forwarder if it
does not have an entry for a packet’s destination in
its distance table. In this case, the node will drop the
packet.

3.3.2 Listening Periods
As mentioned in Section 2.2, there are two reasons

to set different listening periods across nodes. One is
collision avoidance and the other is prioritization.

To avoid collisions, we introduce an element of ran-
domness to a node’s listening period. Additionally, we
require that the MAC layer expose the state of the chan-
nel so that listening period timers can be paused when
the channel is busy. This also decreases collisions, and
allows nodes with a clear channel to transmit first.

To prioritize closer nodes, LFBL sets a threshold based
on the distance from the best path. Despite the fact
that LFBL uses no explicit paths, it can determine
whether it is on the best path using just three pieces
of information: (1) the distance provided by the sender
in the dstDist field of the LFBL header, (2) the node’s
distance d to the destination according to its distance
table, and (3) the length ` of the hop the packet just
traversed, according to the network’s distance metric.

The logic is as follows. If the node is on the best
path between the sender and the destination, the sender
must have used this node’s distance to update its own

distance table. In other words, the sender would have
set its distance to d plus the distance from the node to
the sender. If the network’s distance metric is symmet-
rical and stable, then d should be exactly dstDist− `.
Though it is not always the case that the distance met-
ric will be so reliable, we can reasonably assume that,
the closer d is to dstDist− `, the closer this node is to
the best path from the sender to the destination. Fur-
thermore, if d is in fact less than or equal to dstDist−`,
we assume that this node is on the best path.

This information can be used to adjust the node’s lis-
tening period in a number of ways. In Section 4.1, we
compare three methods, or delay metrics, for prioriti-
zation of nodes’ listening period:

• A purely random listening period, using the dis-
tance metric only to separate eligible forwarders
from ineligible ones.

• The slotted random metric, which divides eligible
forwarders into two groups. The primary group is
for those forwarders that appear to be on the best
path (d <= dstDist − `). The rest of the eligi-
ble forwarders are placed in the secondary group.
The primary group’s time slot starts immediately
upon reception of the packet, while the secondary
group’s time slot begins a fixed time period later.
Within each slot, randomness is used for collision
avoidance.

• The distance + variance + random (DVR) metric,
where a node’s listening period is based on its dis-
tance from the best path (max(0, d− (dstDist−
`))) and the variance of its distance over time.
(The details of how the variance is calculated is
explained in Section 3.1.1.) To these two values,
we also add a random factor to break ties and avoid
collisions.

Regardless of the delay metric used, a node uses the
listening period to listen for other eligible forwarders,
to see if any of its neighbors forward the packet first.
If a node hears a neighbor forward a packet with the
same source and seqnum, it next examines the dstDist

field. If the forwarder is closer to the destination than
the receiving node, the node cancels its pending for-
ward. However, if the forwarder is further away from
the destination than the receiving node, it should com-
pute a new listening period and restart its timer, as it
may still be needed to make forward progress towards
the destination.

Note that both interference from other transmissions
and the hidden terminal problem can cause result in
multiple eligible forwarders forwarding the packet. On
the plus side, this can result in the use of alternate
paths, creating path diversity. On the other hand, it
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can create unnecessary extra transmissions. In the eval-
uation section, we see that the level of overhead caused
by this issue is actually less than the overhead imposed
by traditional routing, and the ability to discover alter-
nate, disjoint paths probably contributes to the success
of the protocol. We can see an example of this effect
at work in Figure 2. These are the actual paths tra-
versed by LFBL REP packets during a simulation of
two simultaneous flows in a 50-node network. An ar-
row is drawn pointing from each forwarder to any other
forwarder that received its transmission.

3.4 Implicit Request Handoff
One last feature of LFBL that helps to support logi-

cal mobility, where appIDs either move between nodes,
or are present at multiple nodes at the same time, is
implicit request handoff. In LFBL, one node can re-
spond to a request addressed to a different node, as
long as it can provide the requested appID. If the re-
quester receives more than one response to its request,
it can pick the one it prefers by choosing which to send
an acknowledgment to. A responder which ceases to re-
ceive acknowledgements for its responses will eventually
give up.

4. EVALUATION
Many dynamic routing protocols are evaluated using

constant bit rate traffic, sent from one node to another
without so much as a request or acknowledgement. This
resembles a DDoS attack more than it does real net-
work application traffic. Real network applications in
use today are bidirectional, even if one endpoint is just
sending requests and acknowledgements and the other
side is sending all of the data. As a result, we use only
bidirectional flows in our evaluation.

To obtain the simulation results presented in this
section, we implemented LFBL in the QualNet net-
work simulator1. AODV simulations were run using
QualNet’s built-in implementation of the protocol with
bidirectional connection establishment enabled. At the
physical layer, all simulations use 802.11b radios oper-
ating at a fixed rate of 11 MBps. We used two different
MAC protocols: a simple Carrier Sense Multiple Access
(CSMA) MAC, and the full 802.11 MAC. The CSMA
MAC simply senses the channel, sending if it is free, or
backing off for a random interval if it is busy. It uses
no retransmissions, acknowledgements, RTS/CTS, etc.

Except where otherwise noted, all of the simulations
below were conducted using 100 randomly placed nodes
in a 1500 by 1500 meter area. Each individual simu-
lation ran for five minutes of simulated time. We ran
every simulation eight separate times with different ran-
dom seeds. The values presented in the figures are the

1http://www.scalable-networks.com/
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Figure 5: A comparison of different distance and
delay metrics.

median of the eight means from the different simula-
tion runs. In figures where error bars are present, they
display the interquartile range of the eight means. For
both LFBL and AODV, each bidirectional flow is com-
posed of a requester, which sends a new request every
100 milliseconds, and a responder, which responds to
any request it receives from the responder. All request
packets are 36 bytes long and all response packets are
1400 bytes long.

We evaluate each simulation using four evaluation
metrics: roundtrip delay, delivery ratio, overhead, and
total data transferred. The roundtrip delay is the amount
of time elapsed from when a request is sent by a re-
quester until it receives a response. The delivery ratio is
the number of packets received (by any node, requester
or responder) divided by the number of packets sent.
Overhead is computed as the total number of packets
sent to the MAC layer for transmission, divided by the
total number of hops traversed by successfully received
packets, minus 100 percent. Total data transferred is
the sum of all bytes received by all requesters over the
entire duration of the simulation.

4.1 Distance and Delay Metrics
Though LFBL does not depend on any particular dis-

tance metric, the choice of distance metric can signifi-
cantly effect its performance. The leftmost two bars in
each group in Figure 5 compare LFBL’s performance
with two different distance metrics: hop count and re-
ceived signal strength. In these simulations, all 100
nodes move using a random waypoint model with no
pause time and speeds between 0 and 30 meters per sec-
ond. There are eight simultaneous, independent flows.

Clearly, the received signal strength metric performs
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Figure 6: Why hop count makes for a poor dis-
tance metric in LFBL.

significantly better than the hop count. Figure 6 illus-
trates the likely cause. With the nodes in this configu-
ration, the center node is the only eligible forwarder for
the source, since it is the only node in the source’s trans-
mission range that is closer to the destination, according
to the hop count distance metric. However, there are
two perfectly useful alternate paths, one through the
upper two nodes and another through the lower two
nodes, neither of which will be used by LFBL. This hy-
pothesis is supported by the lower delivery rate coupled
with significantly lower roundtrip delays observed when
using the hop count metric in Figure 5.

Figure 5 also shows the effects of different choices of
delay metrics. Delay metrics determine the length of
time an eligible forwarder will wait before forwarding
a packet. We evaluate three different delay metrics in
Figure 5: random, slotted random, and distance + vari-
ance + random (DVR). For the random delay metric,
each eligible forwarder simply selects a random delay
between zero and four milliseconds. For the slotted ran-
dom delay metric, nodes select one of two slots based on
the distance metric, as discussed in Section 3.3. Within
each two-millisecond slot, the node selects a random de-
lay between zero and two milliseconds. For the DVR de-
lay metric, the node assigns itself a delay penalty based
on its distance metric and its computed variance, as
discussed in Section 3.3. It then adds a small random
factor to break ties.

Each of these three metrics has a slightly higher deliv-
ery ratio than the last with significantly reduced over-
head. The tradeoff is somewhat longer roundtrip times.
The plots in the following sections all use DVR as the
delay metric.

4.2 Network Utilization
Figure 3 shows the effect of differing levels of network

utilization on LFBL and AODV. As in the previous
section, all 100 nodes move using a random waypoint
model with no pause time and speeds between 0 and
30 meters per second. We vary the number of bidirec-

tional flows in the network, where no two flows share
an endpoint. Thus, with 24 simultaneous flows, just
short of half of the nodes in the network are actively
transmitting data.

From these results, it is clear that AODV was not
designed to be run on top of a primitive MAC protocol
like the simple CSMA protocol used here, as its packet
delivery ratios are under 20 percent. Versus AODV over
802.11, LFBL has significantly higher packet delivery
ratios at all utilization levels and appears to degrade
more gracefully. In particular, there is an enormous
spike in both the roundtrip delay and the overhead of
AODV over 802.11 when the number of flows reaches
24, as well as a marked drop in the delivery ratio. No
such spikes or drops appear to be present in LFBL at
these utilization levels.

4.3 Physical Mobility
Figure 4 shows the effect of differing amounts of phys-

ical mobility on LFBL and AODV. For these simula-
tions, mobile nodes move at a constant velocity of 30
meters per second using a random waypoint model. Any
remaining nodes do not move. Eight simultaneous, bidi-
rectional data flows are present for this simulation.

As intended, LFBL is largely unaffected by the amount
of mobility, maintaining a delivery ratio of well over
90 percent with only a small increase in overhead as
the network becomes more mobile. Once again, AODV
clearly does not interact well with the simple CSMA
MAC protocol. AODV over 802.11 has lower over-
head than LFBL in this scenario when the percentage
of mobile nodes is lower, as well as somewhat shorter
round trip times in the high mobility cases. However,
AODV has a delivery ratio under 60 percent in the pres-
ence of mobility, and its record would appear to be far
poorer with responses than requests – the gap in the to-
tal amount of data successfully received is significantly
higher.

4.4 Logical Mobility
As previously noted, LFBL is designed to support

not only physical mobility of nodes, but logical mo-
bility of application-level identifiers (appIDs) as well.
Figure 7 is a simple demonstration of this capability.
For this simulation, as with the others, 100 nodes were
randomly placed. We assigned 92 of them a random
waypoint mobility model with zero pause time and a
velocity between 0 and 30 meters per second. However,
the remaining eight nodes were kept stationary. Using
this setup, we ran two experiments. In both experi-
ments, two of the mobile nodes served as requesters,
each requesting a different appID. For the first experi-
ment (dark blue bars), we assigned one stationary node
as a responder for each of the two appIDs, creating two
standard bidirectional flows. For the second experiment
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Figure 7: Effect of multiple available responders.

(light blue bars), we assigned four of the (randomly
placed) stationary nodes to respond to the same ap-
pID for each of the two appIDs being requested. The
expected result is a behavior similar to anycast routing,
where, as the requesters move away from one respon-
der and towards another, the closer responder will take
over.

The results in Figure 7 support the expected behav-
ior. When the number of responders is higher, the
roundtrip delay drops significantly. This indicates that
shorter paths were used throughout each simulation run,
despite the mobility of the requesters. The increase in
total data transferred despite an identical delivery ra-
tio and fixed request rate indicates that the requesters
occasionally received responses from multiple respon-
ders. However, the increase is only 30 percent, mean-
ing that, out of four possible responders, each requester
only received 3 extra responses for every 10 requests. If
all responders responded to all requests, each requester
would receive 3 extra responses for every one request.
This small number of extra responses is expected during
initialization and handover phases.

5. DISCUSSION:
SUPPORTING APPLICATIONS

Applications generally require a discovery phase that
resolves application-level identifiers to the IP addresses
of actual hosts. In the Internet, the discovery phase
would likely involve a query to the DNS infrastructure
to resolve a DNS name, but in unstructured, highly
dynamic wireless networks, this will generally have to be
a flooded query. Routing protocols for wireless networks
also tend to involve a flooding discovery phase in order
to determine the physical location of the node with a
particular IP address.

Put another way, there are three identifying traits for
any communication endpoint in a network:

• An application-level identifier, such as a URI, DNS
name, etc.

• A node identifier, such as an IP address, a MAC
address, etc.

• The physical location of a node in the network
topology, the form of which depends on the routing
protocol in use.

Two discovery processes are required here: one to de-
termine the node identifier for a given application-level
identifier (normally the job of a separate application-
level service), and a second to determine the physical
location of a given node identifier (the job of the routing
protocol). LFBL allows applications to conflate these
two processes by combining its own discovery phase
with the application’s. The requesting application pro-
vide an identifier to LFBL, and LFBL leaves it up to
the application at each receiving node to decide if it
wants to reply. This enables deployment not only of
traditional Internet-like modes of communication, but
new types of applications.

For example, named-content-based communication [4]
can greatly benefit from the LFBL capability to deal
with high dynamics. A node can initiate interest for
content by sending an LFBL request for the content
identifier. Any node that has the content, either be-
cause it is the originator of the content or because it
has a cached copy of the content, can respond to the
initiator of the request. LFBL will maintain the ability
to reach the content, rather than any particular node
providing the content, despite dynamics caused by the
mobility of the requester, the mobility of the respon-
ders, the mobility of the forwarders, or the changing
availability of the content due to the opportunistic na-
ture of caching.

6. RELATED WORK

6.1 Opportunistic Routing
The basic idea of making forwarding decisions at the

receiver rather than the sender has been explored in
the past within the context of opportunistic routing.
Next, we present a selected number of publications in
this space.

ExOR [1]: In ExOR, forwarding decisions are made at
the receiver, but the computation of the routing tables
is done in a traditional way, using a link state rout-
ing protocol. ExOR was designed for wireless mesh
networks and as such routing updates caused due to
topology changes are not frequent events. Adapting
ExOR in a mobile environment becomes challenging,
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given the high overheard incurred due to frequent topol-
ogy changes. In contrast, LFBL has been designed from
the beginning with high dynamics in mind, which led
us to a radically different design in terms of route com-
putations.

MORE [2]: MORE is a natural extension of an oppor-
tunistic routing protocol that takes advantage of net-
work coding techniques. While network coding inher-
ently can mask failed paths, caused due to link qual-
ity or topology changes, MORE still does not address
the problem of routing in highly dynamic networks. As
in the case of ExOR, MORE was designed for wireless
mesh networks, and as such it does not have some of the
advantages of LFBL when it comes to maintain routing
state.

ROMER [10]: ROMER makes us of opportunistic
routing in order to deal with the link quality fluctua-
tions in wireless mesh networks. Packets are forwarded
on paths that dynamically adjust based on the end-to-
end quality. In addition, ROMER enables control trans-
mission of redundant packets over alternative paths in
order to improve the overall system resiliency. Again,
LFBL differs in the way that routing state informa-
tion is collected and maintained. ROMER requires full
topology information, while LFBL needs one to keep
track of the distance for each active endpoint.

SSR [3]: SSR shares many similarities with LFBL,
mainly it receiver based forwarding decision making
process and its ability to make use of the wireless broad-
cast channel for routing updates. On the other hand,
SSR was also designed for static wireless networks, with
the end-to-end hop count being the main optimization
goal. As such, the SSR protocol designed has been
highly coupled to the hop count metric. As our evalu-
ation shows hop count is not a desirable metric under
high dynamics, making SSR less applicable for mobile
wireless networks.

6.2 Sensor Networks
GRAB [8, 9]: GRAB makes use of a similar metric

based forwarding scheme. On the other hand, it does
not take advantage of the opportunistic routing tech-
niques. Instead, all eligible nodes forward packets, and
it uses a feedback scheme to control the forwarding re-
dundancy. Given that GRAB was designed for static
sensor networks it cannot efficiently deal with topology
changes.

6.3 Geographical Routing
GPSR [5]: GPSR makes use of geographical infor-

mation in order to route packets. That enables nodes
to route without the need of maintaining the network
topology information. On the other hand, GPSR re-
quires a mapping of node identifiers to location iden-
tifiers, a mapping service non essential for LFBL. Fur-

thermore, GPSR does not take advantage of opportunis-
tic forwarding, which results to nodes having to main-
tain state for every neighbor.

7. CONCLUSION
Physical mobility of nodes and logical mobility of ap-

plication identifiers are two of the main causes of dy-
namics in multi-hop wireless networks. When we en-
deavored to address the latter, expecting that existing
ad-hoc routing protocols were capable of handling the
former, we were surprised to find that dealing with high
dynamics in general was still an elusive goal. We at-
tributed this failure of existing routing protocols mainly
to their dependence on network topology. While current
ad-hoc networks were designed to deal with changes in
the network topology, their main pitfall in dealing with
those dynamics was that they required the full or partial
network topology for the computation of best routes.
As such frequent changes in the topology had a direct
impact on the performance of those protocols. Based
on the above observations we set to design a new rout-
ing protocol for highly dynamic multi-hop wireless net-
works, capable of dealing both with physical mobility
of nodes and logical mobility of application identifiers.

The result is Listen First, Broadcast Later (LFBL),
a new multi-hop wireless protocol comprising of a dis-
tributed forwarding capability with essentially no rout-
ing protocol. The main tenets of LFBL are that all
communications are done through the broadcast wire-
less medium, and minimal state information is main-
tained only for active endpoints. No unicast communi-
cations are used, no per-neighbor state is maintained,
and no network topology information is required. These
design choices have the following profound implications.
Nodes can maintain their forwarding tables in a com-
pletely distributed manner without the need of explicit
signaling by listening to the broadcast medium. At the
same time, they are able to gracefully adapt to dynam-
ics, by leveraging new paths without introducing any
overhead caused by topology changes. Other features
of LFBL, such as its capability to combine multiple dis-
coveries for the various levels of identifiers, i.e. applica-
tion, node and location identifiers, make LFBL suitable
for various modes of communication, ranging from tra-
ditional Internet-style communication to recently pro-
posed named-content-based communication [4].

We have experimentally evaluated LFBL and com-
pared it against AODV, a representative wireless ad-
hoc routing protocol. LFBL outperforms AODV using
four different metrics and in a diverse set of simulation
scenarios. Our results show that, under high dynam-
ics, LFBL delivers around 5 times more packets com-
pared to AODV, while having comparable overhead, in-
troduced mainly due to redundant packets. This and
other results validate our design choices in terms of the
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capability of LFBL to deal with highly dynamic en-
vironments, caused due to physical mobility of nodes
and logical mobility of application identifiers. In the
future we plan to use LFBL to enable new types of ap-
plication protocols for wireless multi-hop networks that
follow more content and service-centric communication
models.
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