
University of California

Los Angeles

Understanding the BGP Transport Delay

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Pei-chun Cheng

2012

c© Copyright by

Pei-chun Cheng

2012

The dissertation of Pei-chun Cheng is approved.

Federic Paik Schoenberg

Mario Gerla

Songwu Lu

Lixia Zhang, Committee Chair

University of California, Los Angeles

2012

ii

Dedication To my Grand Parents, Dad, Mom and Sister.

And my beloved Wife Yunyin.

iii

Table of Contents

1 Introduction . 1

2 Background . 4

2.1 BGP Sessions . 4

2.2 BGP Transport Issues . 6

2.3 BGP Monitoring . 8

3 Longitudinal Study of BGP Session Resets

and Delays . 10

3.1 Inferring Session Reset . 12

3.1.1 Data Sources . 12

3.1.2 MCT Algorithm . 13

3.2 Session Resets over Time . 18

3.3 Discussions on Session Resets . 21

3.3.1 Collector Failures . 21

3.3.2 BGP Timer Settings . 25

3.4 Summary . 32

4 Diagnose BGP transport problems 34

4.1 Data Characterization . 35

4.1.1 Datasets . 35

4.1.2 Flow Level Characteristics 37

iv

4.2 Identify BGP Transport problems 41

4.2.1 Gaps in Table Transfers 44

4.2.2 Consecutive Retransmissions 46

4.2.3 BGP Peer Group Blocking 48

4.2.4 Summary . 50

4.3 Quantification Results . 50

4.3.1 Measuring the Occurrence 52

4.3.2 Measuring the Slowness 53

4.4 Discussion . 54

4.4.1 Suggested Improvements 54

4.4.2 Lessons Learned . 56

5 BGP Transport Delay Analysis . 58

5.1 T-DAT: TCP Delay Analyzer . 58

5.1.1 Series-based Structure for Delay Analysis 59

5.1.2 Input: TCP Packet Trace 61

5.1.3 POI Series Generation . 64

5.1.4 Output: Contributing Delay Factors 69

5.2 Analysis Results . 70

5.2.1 Identifying Major Delay Factors 70

5.2.2 Revisiting the Transport Problems 75

5.3 Discussion . 78

5.3.1 Source of Inaccuracy . 79

v

5.3.2 Prospective Usage . 80

6 Instrument the BGP monitoring 82

6.1 BGP Microscope . 82

6.2 Deployment . 84

7 Related work . 86

7.1 BGP Monitoring Data Quality . 86

7.2 Understanding BGP and TCP Interaction 87

7.3 TCP Behavior Analysis . 88

8 Conclusion . 90

References . 92

vi

List of Figures

2.1 BGP router and BGP sessions . 5

2.2 BGP/TCP connections and output interfaces 6

2.3 BGP optimization with Peer-Group feature 7

2.4 BGP monitoring and data collection 8

3.1 BGP message stream (sil: silence period, rec: session re-establishment,

tt: table transfer duration) . 11

3.2 Number of alive BGP monitors over time 13

3.3 Message stream and collection time 14

3.4 Sample collection time . 14

3.5 Bottom searching . 15

3.6 Difference of identified table transfer duration 15

3.7 Session resets of two example monitors over time 18

3.8 Characteristics of BGP session resets and table transfers 20

3.9 An example of synchronized resets 22

3.10 CDF of Sync’d Peers . 23

3.11 CDF of Sync Ratio . 23

3.12 Sample silence period distribution 28

3.13 KAE silence period . 29

3.14 KAD silence period . 29

3.15 Impact of disabling keepalive timer, RRC00. 31

vii

4.1 ISPA and RouteViews BGP monitoring. 35

4.2 BGP/TCP data collection. 36

4.3 Distribution of flow duration . 38

4.4 Distribution of size, rate, and burstiness of BGP and Internet flows 39

4.5 CDF of table transfer duration . 42

4.6 Stretch of table transfers . 43

4.7 Screenshot of BGPlot . 43

4.8 Gaps in table transfers . 45

4.9 Consecutive packet retransmissions 45

4.10 Downstream (Receiver-local) consecutive losses 48

4.11 Upstream consecutive losses . 48

4.12 Session failures and Peer-Group blocking 50

4.13 Number of session resets . 53

4.14 Number of near-death losses . 53

4.15 Slowness . 54

5.1 High level T-DAT design . 59

5.2 Example TCP trace and POI series 60

5.3 Inferring the sender-side packet arrival 62

5.4 TCP trace with the original and shifted ACKs 63

5.5 Sender-side, receiver-side and network delay ratios of table transfers 71

5.6 Affect of concurrent table transfers 74

5.7 Table transfer duration by delay factors. Y axis is CDF 75

viii

5.8 Infer BGP timers from the gap distribution 79

6.1 BGP Microscope components . 83

ix

List of Tables

3.1 BGP monitoring data sources . 12

3.2 Session resets on collector restarts 25

3.3 RIPE BGP timer settings . 26

3.4 KAE / KAD Peers . 29

4.1 Summary of BGP/TCP datasets 37

4.2 Correlation between flow characteristics 41

4.3 Observed transport problems . 44

4.4 Retransmission Deley of BGP updates (seconds) 46

4.5 Target routers . 52

4.6 Occurrence, 2009 March . 52

4.7 Slowness (R3) . 53

4.8 Improving BGP slow transport 55

5.1 Distribution of major delay factors for table transfers, with the

threshold of 30% transfer duration. 72

5.2 Identify problems and avg. delay described in Section 4.2. 77

x

Acknowledgments

I would like to express my deepest gratitude to my advisor Dr. Lixia Zhang

for her guidance and support throughout my dissertation. From her, I see, and I

still try to learn a persistent, open, and inquiring aptitude toward both research

and life. I also thank Dr. Beichuan Zhang for his seminal idea on studying BGP

session behavior, which starts off to be my integral work in this dissertation. I am

also grateful to my committee members: Dr. Mario Gerla, Dr. Songwu Lu, and

Dr. Federic Paik Schoenberg for their insightful comments and encouragements

during my course of research. The life in Internet Research Laboratory at UCLA

has always been delightful. I thank Dr. Mohit Lad and Dr. Ricardo Oliveira for

sharing their valuable insights in doing research; Dr. Micheal Meisel and Dan

Jen for guiding me through my early days in the group; my best labmate Dr.

Jong Han Park for valuable discussions and feedbacks on my study. I would like

to acknowledge Shane Amante, Keyur Patel, and John Kemp for their valuable

effort to provide essential data source for this work. Finally, I would like to

thank my grand parents, mom and dad, who provide me with love, trust, and

encouragement; my sister, who takes care of the family while I am away; and most

of all, my best friend and wife Yunyin, for her supports and always understanding

on this long and colorful journey.

xi

Vita

1978 Born, Kaohsiung, Taiwan.

2000,2002 B.A., M.B.A. (Information Management),

National Taiwan University.

2002–2007 Software Engineer, Chunghwa Telecom Co., Ltd.

2008 Intern at Cisco Systems, Inc.

2008–2011 Research Assistant, Computer Science Department, UCLA.

2011 Teaching Assistant, Computer Science Department, UCLA.

Publications and Presentations

Pei-chun Cheng, Xin Zhao, Beichuan Zhang, Lixia Zhang, “BGP Route collection

session/collector stability”, IETF 75, July 2009

Pei-Chun Cheng, Kevin C. Lee, Mario Gerla, Jrme Hrri, “GeoDTN+Nav: Geo-

graphic DTN Routing with Navigator Prediction for Urban Vehicular Environ-

ments”, Mobile Networks and Applications, Volume 15 Issue 1, February 2010

Pei-chun Cheng, Xin Zhao, Beichuan Zhang, Lixia Zhang, “Longitudinal study

xii

of BGP monitor session failures”, SIGCOMM Computer Communication Review,

Volume 40 Issue 2, April 2010

Kevin C. Lee, Pei-Chun Cheng, Mario Gerla “GeoCross: A geographic routing

protocol in the presence of loops in urban scenarios”, Ad Hoc Networks, Volume

8 Issue 5, July 2010

Jiangzhe Wang, Eric Osterweil, Chunyi Peng, Chiyu Li, Ryuji Wakikawa, Pei-

chun Cheng, Lixia Zhang, “Implementing instant messaging using named data”,

AINTEC ’10: Proceedings of the Sixth Asian Internet Engineering Conference,

November 2010

Pei-chun Cheng, Jong Han Park, Keyur Patel, Lixia Zhang, “Route flap damping

with assured reachability”, AINTEC ’10: Proceedings of the Sixth Asian Internet

Engineering Conference, November 2010

Pei-chun Cheng, Jong Han Park, Keyur Patel, Lixia Zhang, “Route Flap Damp-

ing with Assured Reachability” NANOG 51, Miami, Florida, USA, January 2011

Pei-chun Cheng, Beichuan Zhang, Daniel Massey, Lixia Zhang, “Identifying BGP

routing table transfers”, Computer Networks: The International Journal of Com-

puter and Telecommunications Networking, February 2011

Jaeyoung Choi, Jong Han Park, Pei-chun Cheng, Dorian Kim, Lixia Zhang, “Un-

derstanding BGP Next-hop Diversity”, 14th IEEE Global Internet Symposium

(Infocom workshop), April 2011

xiii

Pei-chun Cheng, Jong Han Park, Keyur Patel, Shane Amante, Lixia Zhang,

“Explaining BGP Slow Table Transfers: Implementing a TCP Delay Analyzer”

NANOG 53, Philadelphia, PA, USA, October 2011

xiv

Abstract of the Dissertation

Understanding the BGP Transport Delay

by

Pei-chun Cheng

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Lixia Zhang, Chair

Border Gateway Protocol (BGP) [35] tied together the Internet’s global rout-

ing infrastructure. In BGP, routers exchange routing updates to adapt to con-

nectivity changes caused by either intentional routing policy changes or, more

commonly, unexpected software and hardware failures. To maintain the contin-

uous reachability, BGP update exchange (or delivery) is expected to be reliable

and fast. However, it has long been anecdotal knowledge that such BGP update

delivery could be slow, particularly in sending the whole BGP routing tables.

Through a longitudinal assessment on BGP data collected by RouteViews and

RIPE for over eight years, we show empirical evidence that BGP table transfer can

take up to tens of minutes to complete. The observation is prevalent across data

collected from different time and Internet locations. Nevertheless, the explanation

of these delays remains unclear, and it presents a considerable challenge to identify

and understand the causes behind these slow times.

The main goal of this dissertation is to gain a better understanding of these

delay times from the perspective of BGP transport behavior. Although there

have been a plethora of studies on TCP performance in supporting of various

applications, relatively little is known about the interaction between TCP and

xv

BGP, which is exactly an application running on top of TCP. In this work, we

thoroughly investigate the actual BGP/TCP data from operation networks. We

find recurring transport problems, including those reported in previous literature

and new issues identified in this work that collectively induce significant delay.

Such problems are due to various reasons, including implementation issues, router

features, and the interaction between BGP and TCP, to name a few.

To further quantify and analyze the delay, we develop T-DAT, a tool that can

be deployed together with BGP data collectors to infer various factors behind

the observed delay, including the BGP’s sending and receiving behavior, TCP’s

parameter settings, TCP’s flow and congestion control, and the network path lim-

itation. Applying T-DAT on TCP trace, we reveal and characterize the principal

contributing factors behind delay times in the collected BGP dataset. Identify-

ing these delay factors makes a significant step for ISPs and router vendors to

diagnose and improve the BGP table transfer performance.

Admittedly, given the scale and heterogeneity of the current BGP network,

no single study may answer every question of BGP transport delay in the wild.

This work on understanding BGP transport delay not only identifies and explains

BGP slow delivery problem in actual operation networks, but also sheds lights on

the need of improving BGP monitoring practice based on observing detail TCP

level dynamics. As an important contribution of this work, we develop a BGP

analysis tool suite to augment the current BGP monitoring settings and enable

in-depth studies of BGP transport behaviors.

xvi

CHAPTER 1

Introduction

The Internet today has been built upon the successful deployment of Border Gate-

way Protocol (BGP), which enables service providers to establish routing among

each other and maintain the global reachability. In operation, BGP routers, or

speakers, setup BGP sessions with neighboring BGP routers [35]. A BGP ses-

sion is a bidirectional channel through which routers exchange routing informa-

tion and update local routing tables accordingly. In practice, neighboring BGP

routers are commonly connected with high speed lines, and the BGP routing

update exchanges are expected to be fast in general.

However, both the research and operation communities have reported alarm-

ingly long delays in BGP update delivery. Previous works show that it could take

5 up to 15 minutes to send the whole routing table [15,54], which is suspiciously

slow considering the current high network speed. In addition, measurement works

reported the system-wise slow BGP convergence time [26], which takes a few to

hundreds of seconds. While it is possible to attribute specific delay times to BGP

protocol features such as Minimal Route Advertise Interval (MRAI) or Route

Flap Damping (RFD), 1 there is still a wide variety of in-between delay times

remaining unanswered [26].

In this work, we seek to solve these puzzles by studying the BGP transport

level behavior. More specifically, we use TCP and BGP data traces to identify

1for convergence time shorter than 3 minutes or longer than 30 minutes, respectively

1

potential causes for the slow data transfers between two peering BGP routers.

The significance of understanding the delay times is twofold. From the operation

perspective, knowing the causes of the delay helps ISPs and router vendors diag-

nose and improve the performance of their BGP sessions. From the perspective of

passive BGP monitoring efforts like RouteViews, these various one-hop transfer

delays (when they exist) introduce measurement artifacts to the collected BGP

data, potentially leading to inaccurate analysis results.

Recently, several related studies have looked into the BGP delay via its inter-

actions with TCP. Xiao et al. [50] show that BGP update delivery performance

could be seriously degraded upon repeated TCP retransmissions due to network

congestion, which can further lead to BGP session failures in the worst case.

Zhang et al. [54] demonstrate that, even without network congestion, the dura-

tions of BGP table transfers can increase up to an hour under specific low-rate

TCP DoS attacks. By investigating TCP packet traces, Houidi et al. [15] report

an undocumented BGP timer-driven implementation, which potentially accounts

for more than 90% of table transfer time. While these previous works help explain

slow BGP data transfers in their individual settings, and highlight opportunities

to reveal BGP problems by studying the TCP behavior, there remain open issues

about their prevalence and impact on today’s BGP operations. In particular,

there has been no practical way to answer questions raised by network opera-

tors: “Are my table transfers suffering from these reported problems? Are they

significant? Are there other problems specific to my settings?”, to list a few.

In this work, we study the BGP transfer delay problem using the data collected

from a large ISP and BGP monitoring projects. We first show that BGP data

transfer can be surprisingly slow. Then we investigate in-depth TCP trace of

slow transfers. The findings shed lights on interesting on-going BGP transport

2

problems. We further conduct a systematic TCP delay analysis and identify

reasons behind the slow times.

The following dissertation is organized to correspond to each stage of this

work. In Chapter 2, we provide an overview of BGP sessions running over TCP

connections and the potential issues. In Chapter 3, we conducted a longitudi-

nal measurement study of BGP sessions over 8 years of BGP monitoring data

(i.e., application level data). The results show that BGP sessions failed rather

frequently, and the table transfers triggered by each session failure could be slow

(up to tens of minutes), which reveals the prevalence of potential transport de-

lay. Next in Chapter 4, we further show evidence that BGP update transfers are

slow in a large ISP and RouteViews. By investigating TCP packet traces, we

find on-going TCP transport problems, which induce delays of different magni-

tude in BGP update delivery. In Chapter 5, we develop a new tool, T-DAT, to

identify and measure different factors behind the transfer delay. We demonstrate

the T-DAT’s usage and look at the results on explaining durations of slow table

transfers. We emphasize that, given the scale and heterogeneity of the current

BGP network, the results may not answer all the questions of slow BGP table

transfers in the wild. However, our new tool enables systematic analysis of the

BGP table transfer behavior. The tool uses TCP packet traces, which can be

collected passively and requires no modification to the BGP operation. Also, note

that although this work is driven by BGP performance analysis, T-DAT itself is

general and may also be used for other TCP-based applications. For the rest of

this dissertation, we discuss the proposed analysis tool set in Chapter 6, related

works in Chapter 7, and conclude the paper in Chapter 8.

3

CHAPTER 2

Background

The Internet is made of tens of thousands of different Autonomous System (AS).

Border Gateway Protocol(BGP) is the de facto protocol used to distribute reach-

ability information across different ASes. More specifically, BGP runs a global

dissemination network, within which each node is a BGP router and each link

is a BGP session established between two neighboring BGP routers. Figure 2.1

shows an example BGP network that consists of four ASes. BGP sessions estab-

lished between routers of different ASes called external BGP (e-BGP) sessions

while those of routers within the same AS are called internal BGP (i-BGP) ses-

sions. Each BGP session (both e-BGP and i-BGP) is a bi-directional channel

for two neighboring routers to exchange routing information. In this chapter, we

provide a brief overview of BGP and its requirements on the underlying transport

service.

2.1 BGP Sessions

By design, BGP is a hard-state protocol [35]. Every BGP router maintains a

persistent routing state with its neighbors. Upon successfully establishing a BGP

session, two peering routers first exchanges with each other the whole routing

tables.1 After this initial synchronization step, the two peers then only send

1A full table contains around 370K routes at the time of this writing

4

Figure 2.1: BGP router and BGP sessions

incremental updates whenever routing information changes. In this design, the

delivery order of BGP updates is crucial. That is, receiving same updates in

different orders could result in different routing states. As a result, BGP runs on

top of TCP for in-sequence and reliable communication.

A BGP session is expected to be long-lived, and only manually terminated

by network operators. However, it may fail due to a variety of reasons, such as

malformed BGP updates caused by hardware or software defects, TCP connection

problems due to network failures, and prolonged network congestion, etc. Also

note that BGP does not rely solely on TCP to detect network failures. BGP

employs two timers, Keepalive and Holddown, whose default values are 60 seconds

and 180 seconds respectively. BGP peers send to each other Keepalive messages

at every Keepalive timer interval. If no Keepalive message is received before the

Holddown timer expires, a BGP router will drop the current session and initiate

a new one, which is referred as a session reset.

5

���

�������

�	�
 �	���	�� ���

���� ���

Figure 2.2: BGP/TCP connections and output interfaces

2.2 BGP Transport Issues

As the Internet connectivity becomes denser over time, a BGP router runs an

increasing number of peering sessions, both for e-BGP routers between different

ASes, and i-BGP routers within large ISPs. In Figure 2.1, each router in AS1

has an external neighbor and three internal neighbors, and BGP updates received

from the external neighbor, when changing the routing table, would need to be si-

multaneously forwarded to other internal neighbors. This synchronized workload

imposes bursty stress on the underlying transport service.

This performance issue has long been recognized, and previous works tried to

address this problem with different approaches. Jacobson et al. proposed BGP

Scalable Transport (BST) [31] to solve this problem through application layer

multicast. The idea is to maintain a multicast tree for BGP peers that shall

receive identical routing updates. Then, one copy of update is generated and

forwarded along the multicast tree. This approach has not been widely deployed

because of the incurring overhead of maintaining multicast trees.

On the other hand, router vendors address this problem via optimizing the

transport performance of the sending router. Figure 2.2 shows an abstract di-

agram of a BGP router. Each BGP router establishes BGP sessions with all

6

����

����

����

����

����

���	

���

�������

���

�

���������

���������

��������	

�

�

�

�

�

�

�

(a) No Peer-Group

����

����

����

����

���	

���

�������

���

�

���������

���������

��������	

�

�

�

(b) Peer-Group

Figure 2.3: BGP optimization with Peer-Group feature

its peers. Each session is then associated with a TCP connection, while mul-

tiple TCP connections could pass through and compete the limited resource

(i.e., bandwidth, buffer size) of a handful of physical interfaces. Thus, vendors

have suggested guidelines to adjust queue limits and TCP parameters. The gen-

eral principle is to adjust the queue size, TCP window, and packet size based

on the number of BGP peers to prevent packet losses [53]. Moreover, an en-

hancement feature Peer-Group is introduced to optimize the update generation

process [53]. In the original BGP implementation, a BGP router has to generate

updates individually for each peer. This results in waste of the processing time to

generate multiple copies of same updates for peers with the same configuration.

To save router CPU for better scalability, Peer-Group is implemented to group

together peers with the same export policy. Then updates are generated once per

group, and simply replicate to each group member, which substantially reduce

the processing overhead. Figure 2.3(a) and figure 2.3(b) show routers with and

without using peer-group respectively.

7

���������	

���	�����������������	

���	��������

���������
���	
���

�������� ���������	���	
������

����������	
�����	�	�������

����������	�����	�
�������

Figure 2.4: BGP monitoring and data collection

2.3 BGP Monitoring

To help understand the Internet routing dynamics, RouteViews and RIPE RIS,

the two best known BGP data collection projects, operate a number of collector

boxes that establish BGP sessions with routers in various networks. We call each

operational router connecting to a collector a monitor or a peer, and the BGP

session between the monitor and the collector a monitoring session. A monitoring

session can be either single-hop or multi-hop depending on whether the session

is across a single or multiple physical hops. As shown in Figure 2.4, single-hop

monitoring sessions are usually used in Internet Exchange Points, while multi-hop

monitoring sessions are established over wide-area networks.

The collector could be a commodity vendor router or a PC-based Quagga

router. 2 The Vendor collector works as a looking glass and mainly allows op-

erators to log in and look up the current routing information. The Quagga col-

lector records the received BGP updates in the Multi-threaded Routing Toolkit

(MRT) [27] format, which has been widely used in studying BGP behavior [37,38].

2Quagga is a software based routing suite, which implements routing protocols such as OSPF
and BGP, and is widely used in monitoring BGP behavior [34]

8

The Quagga collectors receive BGP routing updates from peers and save the

collected BGP updates into files every 15 minutes (RouteViews) or every 5 min-

utes (RIPE) in the Multi-threaded Routing Toolkit (MRT) [27] format. These

files are then made publicly available. The collectors also dump snapshots of the

BGP routing table, the RIB, for each of its peers every two hours in the MRT

format. Over years, this data has become an essential asset for research commu-

nity to help understand various aspects of the global routing system. However,

note that such BGP data only includes the application layer routing message; it

does not contain detail TCP layer information. In this work, we would show the

limitation of this setting in revealing various important BGP transport problems.

9

CHAPTER 3

Longitudinal Study of BGP Session Resets

and Delays

Since 1999, BGP routing information collected by RouteViews and RIPE RIS has

become an indispensable asset for the research community to help understand

various aspects of the global routing system, such as Internet topology [43], BGP

convergence [29], ISP peering policies [13], and prefix hijack monitoring [21], to

name just a few. In this chapter, we start off this work by leveraging such BGP

monitoring data. The main challenge in that, the goal is to understand the trans-

port related issues while the BGP monitoring data only contains application level

routing updates. Given this mismatch, we propose to infer BGP session resets

and delays from the application updates, and characterize high-level transport be-

haviors. The idea is based on the BGP design that the whole process of session

reset mainly involves two neighboring routers. The delay times during the session

resets thus could indicate the potential transport issues between two routers.

Figure 3.1 illustrates a simplified timeline of BGP session reset behavior from

the collector’s perspective. Assuming that a monitor has a routing table of 5

prefixes, First, three incremental BGP updates (for prefixes p1, p2, p3) are re-

ceived at time 10, 14, and 17, respectively. Then the session fails at time 17

and restarts at time 22. The session re-establishment takes time from 22 to 25,

during which the collector records three state messages. The state message s1

10

��

�������������������	��������������������������
��	�������������������������������

��� ��� ��

Figure 3.1: BGP message stream (sil: silence period, rec: session re-establish-

ment, tt: table transfer duration)

marks the time when a router initiates a BGP session, while s3 marks the time

when the session is fully established. We show three state messages here for il-

lustration purpose; in reality establishing a BGP session may require more state

changes [35]. Following state messages are the table transfer updates during time

period 26 to 30, which include the entire routing table entries (p1 to p5), followed

by incremental updates afterward. We refer the duration (17, 22), (22,25) and

(26,30) as silence period, recovery period, and table transfer period, respectively.

These three periods all leave time gaps in the BGP routing data. Our goal is to

measure these delays and especially focuses on the table transfer duration as it

reflects the underlying BGP transport behavior.

Interestingly, note that BGP session resets are commonly considered harmful,

as they lead to both missing and duplicate updates during session re-establishment,

making analysis results derived from such data inaccurate. Here in this work, we

instead utilize these undesired BGP resets to help understand the BGP transport

behavior. In the following sections, we present the first systematic assessment

and documentary on BGP session failures and delay times of RouteViews and

RIPE data collectors from 2001 to 2009. Our results show that monitoring ses-

sion failures are rather frequent, more than 30% of BGP monitoring sessions

experienced at least one failure every month. The table transfers after each ses-

sion reset could be slow (up to tens of minutes), which indicates the possibility

11

Table 3.1: BGP monitoring data sources

Collector Type Start Date Location

RRC00 Multi-hop 2001 Jan Amsterdam

RRC01 Single-hop 2001 Jan London

RRC02 Single-hop 2001 Mar Paris

OREG Multi-hop 2001 Oct Oregon

LINX Single-hop 2004 Mar London

EQIX Single-hop 2004 May Ashburn

of transport level delays. Furthermore, we observed failures that happen across

multiple peer sessions on the same collector around the same time, suggesting

that the collector’s local failures are a major factor in the session instability.

3.1 Inferring Session Reset

In this section, we discuss data sources and our approach of identifying session

resets and delays in the BGP data.

3.1.1 Data Sources

RouteViews and RIPE started collecting BGP data in the late 1990’s, and went

through a learning period in the first few years before the data collection process

stabilized. In this chapter, we use the data from January 2001 onward to Decem-

ber 2009. We take data from six collectors at different locations. The collector

information is summarized in Table 3.1. For the eight years period, Figure 3.2

shows the number of peers at each of collector over time. For each day we count

the number of unique peers that logged BGP data. The figures show that we

cover a representative number of routers in the data (more than 100 routers) The

12

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2001 2002 2003 2004 2005 2006 2007 2008 2009

D
a
ily

 N
u
m

b
e
r

o
f
A

liv
e
 P

e
e
rs

Year

OREG

LINX

EQIX

OREG
LINX
EQIX

(a) RouteViews

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2001 2002 2003 2004 2005 2006 2007 2008 2009

D
a
ily

 N
u
m

b
e
r

o
f
A

liv
e
 P

e
e
rs

Year

RRC00

RRC01

RRC02

RRC00
RRC01
RRC02

(b) RIPE

Figure 3.2: Number of alive BGP monitors over time

downward spikes in the figures mean that a large number of peers did not log any

data on those days, which could be caused by collector outage or maintenance.

We will discuss collector failures in the following section.

3.1.2 MCT Algorithm

As Figure 3.1 suggests, session state messages (s1, s2, s3) could potentially help

identify session resets. Unfortunately, state messages are only logged by RIPE,

but not by RouteViews. Also, state messages do not identify the duration of the

following table transfer.

In [47] Wang et al. used syslog messages to detect failures of BGP sessions in a

tier-1 ISP. However, syslog information is not available from RIPE or RouteViews

collectors. For RIPE, it offers process log for Quagga collectors [34], but such

log does not explicitly record BGP session resets. As for RouteViews, it offers

Rancid log, but the log is only generated once per hour. As the result, we cannot

rely on these logs as the primary method of detecting session resets.

In [51] Zhang et al. developed an algorithm called Minimum Collection Time

13

Figure 3.3: Message stream and col-

lection time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 375000 380000

c
o
lle

c
ti
o
n
 t
im

e
 s

(t
)

(s
e
c
o
n
d
)

time t (second)

Figure 3.4: Sample collection time

(MCT) that can identify the start and the duration of table transfers from BGP

data in the absence of state messages. Based on the fact that all prefixes in the

routing table are announced during a table transfer, MCT searches for the small-

est time window during which the full table is announced. Using three months

of data from 14 different monitored peers, this method successfully detected over

94% of session resets1. The strength of MCT is that it only relies on regular BGP

updates and has been shown as a practical way to identify session resets in both

RIPE and RouteViews BGP data. In this chapter, we further improve the MCT

algorithm for even better detection accuracy.

3.1.2.1 Minimum Collection Time

The Minimum Collection Time (MCT) algorithm is based on the observation

that, “during a table transfer, all the prefixes in the routing table would be

announced within a relatively short period of time” [51]. Thus, given the message

steam in Figure 3.3, for update (not state message) received at time t, MCT

calculates the collection time, s(t), as the time it takes for all five prefixes to be

1The false positive in [51] is lower than 5%.

14

Figure 3.5: Bottom searching

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300 350 400

D
if
fe

re
n

c
e

 i
n

 S
e

c
o

n
d

s

ID (sorted by difference of table transfer duration)

Figure 3.6: Difference of identified ta-

ble transfer duration

announced. For example, if we assume that the entire routing table consists of

entries for five prefixes (p1 to p5), and the first update of prefix p3 arrived at

time 10, then the collection time s(10) would be 30−10 = 20, since it takes until

time 30 for all five prefixes to be announced. We can further calculate collection

times for all the following updates. Note that after time 27, the collection time

becomes infinite, since we could not collect all five prefixes afterward.

One important observation about s(t) is that, ideally the collection time for

a given update stream shows a monotonically decreasing and then increasing

trend, and the local minimum of collection time indicates the true duration of

table transfer. Therefore, we can identify the occurrence of table transfer, and

thus the session reset, by simply looking for the local minimum of collection time.

2. for updates arrived before the beginning of the table transfer, s(t) decreases

steadily until reaching a minimum value s(26) = 4, which indicates the true

duration of table transfer. After this minimum value, s(t) steadily increases.

From this monotonically decreasing and increasing trend, In reality, to handle

2MCT presume a upper limit of 7200 seconds for s(t).

15

uncertain timing and ordering of updates messages, MCT also introduces several

simple tune-ups. We refer readers to [51] for more details about MCT.

3.1.2.2 MCT Improvements

We made two improvements over MCT: better BGP table size estimation and

bottom search scheme. First, the MCT results reported in [51] used one sample

BGP RIB size as the estimate of the routing table size for each month. This

estimation may be imprecise because of the growing or shrinking of the routing

table over time. To improve the estimation accuracy, we calculate the table size

every day, which gives more accurate table size estimation.

Second, MCT assumes that an update with local minimum collection time

flags the start of a full table transfer. However, because the minimum collection

time is calculated based on the estimate table size, which could be smaller than

the actual table size, MCT might identify the start of a table transfer with few

seconds offset. For example, in figure 3.5, the table transfer starts at tS and ends

at tE. Assume that the expected table size calculated by MCT is 3 entries smaller

than the actual table size. Then, MCT would prematurely conclude tS to t1 as

one potential table transfer, and so as tA to t2, tB to t3, and tC to tE. Any one

of these four could be identified as the start of the table transfer.

To better estimate the start of table transfer, MCT addresses this problem

by adopting a backward bottom searching, which looks backward in time for a

fixed number of seconds to locate the true start of a table transfer. In Figure 3.5,

assume that MCT identifies a minimum collection time s(tA) at time tA, then it

searches backward in time to locate the earliest update between tA − B and tA,

and makes this update the new start of table transfer. Note that this backward

bottom search allows MCT to better locate the true start time, but it may still

16

miss the true end of table transfer.

Thus, we apply bidirectional bottom searching thresholds to search both for-

ward and backward. And instead a fixed threshold, we refine the table transfer

duration until it finds a relatively large gap E in the collection time.3 Note that

with bidirectional bottom searching, our algorithm is expected to detect session

resets with same accuracy compared with the original MCT, but with more ac-

curate estimate of the start time and duration of table transfer. For ease of

discussion, we refer our algorithms as eMCT. The high level procedures of eMCT

is summarized as follows.

1. Estimate the table size for every given day.

2. Calculate collection time for all updates based on the expected table size,

and find all local minimum using MCT.

3. For each local minimum, search both backward and forward in time to locate

the true start and end of table transfer.

By applying MCT and eMCT on three months of RRC00 data from 2002 Jan

to 2002 March, we found that both of them detect the same 510 session resets

followed by full table transfers, while eMCT identifies slightly longer table transfer

duration. Figure 3.6 shows the difference in seconds, between the table transfer

durations detected by eMCT and MCT for the same session reset. For most of

the cases, the difference is less than 10 seconds, while there are five cases whose

difference is greater than 10 seconds. After manual inspection, we verified that

eMCT correctly identified the true table transfer duration, while MCT identified

shorter table transfer durations due to imprecise table size estimate.

3From our experiments, we set E = 3 seconds which seems effective enough in finding true
table transfer duration.

17

 0

 200

 400

 600

 800

 1000

 1200

 1400

2002 2003 2004 2005 2006 2007 2008 2009

S
e
q
u
e
n
c
e
 N

u
m

b
e
r

o
f
R

e
s
e
ts

Time

Peer 217.75.96.60
Peer 66.185.128.1

Figure 3.7: Session resets of two example monitors over time

3.2 Session Resets over Time

We present the overall BGP session reset statistics in this section, and then

investigate the causes of session resets in the next section.

First, since data collectors only passively receive BGP updates from their

peering monitors and are not involved in forwarding data traffic, the monitoring

sessions between data collectors and monitors have simple configuration, low

workload, and requires little maintenance. Thus the monitoring sessions are

expected to be stable and long lived, and users of BGP data usually do not pay

much attention to possible session resets during their measurement periods.

Our results, however, show that monitoring session resets are relatively fre-

quent. Figure 3.7 shows the cumulative number of resets for two monitoring

sessions at the OREG collector, 66.185.128.1 and 217.75.96.60, over the past

eight years. The session with 66.185.128.1 has 4.5 resets per month on average,

a typical case among the sessions at OREG. The session with 217.75.96.60 is the

worst case at OREG, averaging 15.8 resets per month. Although some months

18

have more BGP session resets than others, overall the resets occur persistently

over time.

The observation is prevalent across all the collectors, regardless of the type

of the session (single-hop or multi-hop), the age of the collector, or its location.

Figure 3.8(a) shows the cumulative distribution of the number of resets per peer

per month for all the 6 monitors we measured. For the two multi-hop collectors,

OREG and RRC00, 10-20% session-months do not have any reset, while the 50-

percentile is 3 resets, and the 90-percentile is 12 to 15 resets per session-month.

The worst case at OREG is a monitor that had 117 resets in one month, while

one of the RRC00 peers had 4205 resets in one month. The single-hop collectors

have fewer resets, but the numbers are still alarming. RRC01 and RRC02 also

have some sessions that had thousands of resets in a month. These cases were

likely caused by hardware problems or mis-configurations that made the sessions

up and down constantly before they were fixed.

For each session reset, we then measure the session delay times, including

the session downtime and the following table transfers. Here, session downtime

is defined as the time between when the failure is detected and when the BGP

session is fully re-established. Since the failure itself is not logged in the BGP

data, we estimate session downtime from the last BGP update preceding a reset

and the first BGP update after the session re-establishment as illustrated in

Figure 3.1. In Figure 3.8(b), we observe that the majority of session downtimes

are within ten minutes, but some cases are much longer. For example, at OREG

the session downtime has a 25-percentiles at 1 minute, 50-percentiles at 6 minutes,

and 90-percentiles at 48 minutes. All collectors have cases in which the session

downtimes are more than 10 days. Users of BGP data can easily spot very long

session downtimes (e.g., , days) and take precautions accordingly in their data

19

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Number of Session Resets

RRC00

OREG

RRC01

RRC02

LINX

EQIX

(a) Num. Session Resets, per router-month

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Session Downtime (Minutes)

RRC00
RRC01
RRC02
OREG

LINX
EQIX

(b) Session Downtime

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Duration of Table Transfer (Minutes)

RRC00
RRC01
RRC02
OREG

LINX
EQIX

(c) Duration of Table Transfers

Figure 3.8: Characteristics of BGP session resets and table transfers

processing. However, given that majority of the session downtimes are within

10 minutes, without knowing the existence of session resets, it is difficult for the

BGP data users to identify these short durations of quiet periods as data missing

and take proper measures accordingly.

Figure 3.8(c) shows the cumulative distribution of table transfer duration. We

observe that over 90% of table transfers finish within around 5 minutes, while

table transfers at OREG tend to take longer time to finish, with 50-percentile at

4.5 minutes and 90-percentile at 14 minutes. This is surprisingly slow considering

that a routing table usually contains less than 10MB of data. We further calculate

20

and find that the table transfer time is not significantly correlated with the routing

table size, which indicates that the link bandwidth is not the limiting factor.

Recently, Houidi et al. [15] reported that slow table transfers are potentially

due to routers’ timer-driven implementation. We will further discuss the BGP

transport problems in the following chapters.

The main point to take away from this section is that the BGP monitoring

session resets occur frequently, averaging a few times per peer per month across

all the 8 years and 6 collectors that we have examined. Majority of session down-

times last within 10 minutes and the following table transfers usually complete

within another few more minutes, during this time period actual BGP updates

are missing and superfluous table transfer updates are introduced. There exist

extreme cases with thousands of resets in a month, or downtime for multiple days,

or tens of minutes or longer to finish a table transfer. From the transport point

of view, these prolonged delay times are suspicious and call for further analysis,

which is the main task for the reset of this work.

3.3 Discussions on Session Resets

In this section, we investigate the potentially causes of observed session resets

and delay times.

3.3.1 Collector Failures

Maintaining a stable data collecting service is critical to the quality of logged

BGP data. Collecting services may be disrupted by hardware defects, software

bugs, network problems, or planned maintenance. For example, RouteViews

has reported sporadic collector outages owing to interface malfunctions, memory

21

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Aug 02 Aug 09 Aug 16 Aug 23 Aug 30

P
e
e
r

ID
Date

Figure 3.9: An example of synchronized resets

problems, fiber cuts, software upgrades, and other problems [40]. RIPE also

occasionally announces degraded service for maintenance [37]. Unfortunately,

neither RIPE nor RouteViews maintains complete information about collector

outages. In this section, we identify collector problems by correlating session

resets on the same collector.

3.3.1.1 Correlating Session Resets

From the session resets identified in the previous section, we find that a collector’s

session resets across different peers are sometimes clustered within a short time

window. For example, Figure 3.9 shows the session resets for RRC00 during

August, 2003. On August 19th, almost all peers had session resets. This implies

that the collector itself might have experienced a problem.

We define synchronized session resets of a collector as a group of resets oc-

curring within a time window w, synchronized peers as the peers appearing in

synchronized resets, and synchronization ratio as the ratio of the number of syn-

chronized peers to the number of total alive peers of the collector at that time.

For example, if five out of ten peers have resets within w, these five resets are syn-

22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Number of Sync’d Peers

rrc00
rrc01
oreg
linx

Figure 3.10: CDF of Sync’d Peers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Synchronization Ratio

rrc00
rrc01
oreg
linx

Figure 3.11: CDF of Sync Ratio

chronized resets associated with five synchronized peers, and the synchronization

ratio is 0.5.

Figure 3.10 shows the cumulative distribution for the number of synchronized

peers for four collectors 4. For RRC00, about half of the session resets are stan-

dalone (i.e., , the number of synchronized peer is 1), and the rest of resets are

synchronized to some extent. For other collectors, synchronized resets contribute

to more than 70% of all the resets. There is a sharp increase near the tail of the

curve, indicating that a significant number of session resets involves most or all

peers. Figure 3.11 shows the cumulative distribution of the synchronization ratio.

There is a sharp increase among all the four collectors between 0% to 10%. This

is because the collectors usually have 10 to 20 concurrently alive peers, which

leads to a lower bound on the synchronization ratio of approximately 5% to 10%.

After the synchronization ratio passes 90%, there is another sharp increase, which

accounts for 10% to 30% of the total session resets.

4We use four example collectors to demonstrate the distributions of synchronized resets.

23

3.3.1.2 Identifying Collector Problems

We assume that if all or most peers have session resets at the same time, the

cause is likely to be a local problem at or near the collector. We name such a

problem “collector-restart”, even though the session resets can be due to different

local problems, such as a collector machine reboot, a BGP daemon restart, or

network connectivity problems, and so on.

We use a 90% of synchronization ratio as the threshold to detect collector-

restart and require that there must be at least five alive peers. As a result, we

detected 72 collector-restarts at RRC00 from August 2002 to December 2008.

August 2002 is used as the starting time because RIPE started to archive the

process log of the collector daemon at that time. The process log records the

termination and start of the collector process, and thus can be used to verify our

detection results. After matching the observed restarts against those recorded in

collector process logs, we find 7 observed collector restarts that are detected by

our method but not recorded in collector process logs. Further inspection finds

that 5 of the 7 cases are due to errors in the collector log and 2 cases are due to

a large number of BGP re-connections in a short time, which might be caused

by network instability. There are also 22 collector restarts that are recorded

in collector process logs but our scheme failed to detect. Among these cases,

2 are due to two consecutive collector restarts, so that there is no BGP session

successfully established in between. The other 20 cases are due to some peers that

disconnected or failed but are still counted as active, so that a collector could

not successfully re-establish sessions to these peers after collector restart, and

results in a synchronization ratio which is lower than our 90% threshold. Overall

this simple algorithm yields over 95% correctness and detects 80% of collector

restarts.

24

Table 3.2: Session resets on collector restarts
collector no. restarts no. session resets (%)

RRC00 105 1154 (14%)

RRC01 112 1999 (26%)

RRC02 - -

OREG 178 6370 (37%)

LINX 29 673 (30%)

EQIX 9 69 (14%)

Table 3.2 shows the number of collector-restarts detected at each collector

along with the number of session resets triggered by these restarts. We can see

that 14% to 37% of session resets are caused by collector-restarts 5. The problem

is more pronounced for collectors that have many peers, such as OREG, for which

37% of session resets are due to local problems at the collector. Since collectors’

local problems are a major contributor to session failures, it is important to

improve the stability of the collector, including its network connectivity, software

and hardware, in order to reduce monitoring session failures.

3.3.2 BGP Timer Settings

In October 2002 RIPE disables all its collectors’ BGP Keepalive/Holddown timers.

This was due to the observation that, during periodic RIB archiving, some old

collectors stopped sending BGP messages, causing BGP sessions to timeout and

triggering a surge of session resets. To alleviate this problem, RIPE disabled BGP

timers. However afterward it was noticed that disabling Keepalive/Holddown

timers caused BGP to lose the ability to detect connectivity problems such as

link failures, and thus introduced long, unexpected session downtimes. Since

5Since RRC02 sessions are quite small in general, the number of session resets is not large
enough to conclude a collector restart by using synchronization ratio.

25

Table 3.3: RIPE BGP timer settings

Time Period Keepalive Holddown

Before 2002 Oct 17 60 sec 180 sec

After 2002 Oct 17 Before 2006 Nov 23 0 sec 0 sec

After 2006 Nov 23 60 sec 180 sec

later collector software fixed the BGP message blocking problem during RIB

archiving, RIPE restored the BGP timers on all its collectors in November 2006.

Table 3.3 summarizes the timer settings for RIPE; note that a value of 0 disables

a timer. In this section, we document and quantify the impacts of changing BGP

Keepalive/Holddown timers on the stability of RIPE monitoring sessions.

One issue we observed is that, while RIPE’s plan was to disable the timers

for all the BGP monitoring sessions, the Keepalive/Holddown timers for some

peers were never turned off. This could be due to the fact that a zero timer value

was not allowed on some Juniper routers as of 2002, or due to misconfiguration,

which we will discuss later.

No matter what may be the cause, to measure the impact of disabling BGP

timers, we need to differentiate between BGP sessions that have the timers dis-

abled, and those that have the timers enabled. We define Keepalive-enabled

(KAE) sessions as BGP sessions that have the Keepalive timer enabled, and

Keepalive-disabled (KAD) sessions as the sessions that have the timer turned off.

3.3.2.1 Identifying KAE/KAD Sessions

Differentiating between KAD and KAE sessions poses a challenge since RIPE

does not keep historical records for collector configurations. In this section, we

proposed a heuristic method to distinguish these two kinds of sessions.

26

3.3.2.2 Collecting Session Downtimes

For each identified session reset, we further compute the corresponding session

downtime. we define session downtime as the period during which a failed session

has been detected and fully re-established. thus, a session downtime can be

further divided into a silence period followed by a recovery period, which has

been briefly described in Figure 3.1.

We define silence period, preceding a session re-establishment, as the duration

when a failed session remains silent. we measure it as the difference between the

timestamp of the last seen regular BGP update and the first succeeding session

state message. Figure 3 shows an example silence period, sil, between time 17

and 22. ideally, silence periods indicate how long does it take for a data collector

to detect failures. when a data collector receives malformed BGP messages from

its peers, it may pro-actively reset the session, during which the silence period

is extremely short. however, for cases such as link failures, a collector may have

to wait for the Holddown timer to expire. this may take more than 90 seconds

or 180 seconds depending on the timer configuration. note that the real silence

period may be shorter than our measured period. this is because BGP keep-

alive messages are not logged by data collectors. some keep-alive messages might

be received from a peer after the last seen BGP updates. for these cases, our

measured silence periods serve as the upper bound of the real silence periods.

We define recovery period as the duration of BGP session re-establishment.

we measure it as the difference between the timestamp of the first session state

message and the last session state message which basically mark the begin and

end of BGP session establishing process. figure 3.3 shows an example recovery

period, rec, between time 22 and 25. in general, a BGP session establishment

involves setting up a TCP connection, handshaking timers, and negotiating BGP

27

 0.01

 0.1

 1

 0 50 100 150 200

P
e

rc
e

n
ta

g
e

Silence Time (seconds)

Silence Period PDF

Figure 3.12: Sample silence period dis-

tribution

capabilities [35], which requires at least several seconds to recover a BGP session.

For failures such as link congestion, a session establishment may include several

unsuccessful connection attempts. BGP adapts an exponential back-off approach

to increase the interval between each reconnection, which might significantly in-

crease the recovery period.

Based on these definitions, the idea is to infer the BGP Holddown timer value

based on the distribution of session downtime. For session resets triggered by

Holddown Timer expiration, the duration of silence period should be close to

the length of the Holddown Timer. Figure 3.12 shows the distribution of silence

time for session resets from an example RRC00 session with 90 second Holddown

Timer, which shows that a significant number of session resets are associated with

a 90 second silence period. We then identify KAE sessions as those with a single

silence period duration length which is associated with more than 10% of session

resets. This 10% threshold is chosen conservatively based on the measurement

result in [47], which observed that more than 20% of session resets are triggered

by the expiration of BGP Holddown Timers.

28

 1

 10

 100

 1000

 10000

 100000

2001 2002 2003 2004 2005 2006 2007 2008 2009

S
ile

n
c
e

 P
e

ri
o

d
 (

S
e

c
o

n
d

s
)

Time (2001.01 ~ 2008.12)

129.250.0.232

Figure 3.13: KAE silence period

 1

 10

 100

 1000

 10000

 100000

2001 2002 2003 2004 2005 2006 2007 2008 2009

S
ile

n
c
e

 P
e

ri
o

d
 (

S
e

c
o

n
d

s
)

Time (2001.01 ~ 2008.12)

202.12.28.190

Figure 3.14: KAD silence period

Table 3.4: KAE / KAD Peers

Collector Total Peers KAE KAD

RRC00 42 9 33

RRC01 57 5 52

RRC02 15 2 13

Applying this algorithm on RRC00 data, we identified 9 KAE sessions out

of total 42 BGP sessions. Figure 3.13 and Figure 3.14 show the distribution of

silence time for one identified KAE session and one KAD session, respectively.

The vertical lines mark the dates when RIPE disabled and enabled BGP timers.

These two figures verify that, after RIPE disabled timers on Oct 17, 2002, the

identified KAE session continued to trigger session resets after a 90 second silent

period, but the KAD session did not. Table 3.4 summarizes the inference results

for three RIPE collectors. In the remaining of this section we only consider session

resets from the KAD sessions.

29

3.3.2.3 Number of Session Resets

We first measure the number of session resets before and after disabling timers.

Figure 3.15(a) shows the cumulative distribution of the number of session resets

per month for KAD sessions. We group session resets into three periods based on

the dates RIPE disabled and enabled timers: Before 2002.11, 2002.11 to 2006.11,

and After 2006.11. After disabling BGP timers in 2002.11, we can observe a left

shift of the distribution, which indicates a drop in the number of session resets.

The median number of session resets of “Before 2002.11 ” is about 4 times of

that of “2002.11 to 2006.11 ”. This shows that disabling BGP timers did reduce

the number of session resets. After 2006.11, when RIPE restored the timers, the

distribution shifts right, but with a smaller magnitude. This is because the newer

version of the collector software fixed the BGP message blocking problem during

RIB archiving. Thus there should not be as many resets as before Nov, 2002.

We observed a similar distribution of the number of session resets for other RIPE

collectors.

3.3.2.4 Session Downtime

In this section, we measure the silence period and recovery period for the un-

noticed side effect of disabling BGP timers. Figure 3.15(b) shows the CDF of

the silence period for KAD sessions. Before disabling BGP timers, there are two

consecutive sharp jumps at around 90 and 180 seconds silence time, which rep-

resent session resets trigger by Holddown timers with 90-second and 180-second

values. After disabling Keepalive timers, these two jumps basically disappeared

and the CDF of the silence period began to follow a long-tail distribution. This

is because, with Keepalive timers disabled, BGP sessions could no longer detect

failures by the timeout interval. These failures either went on unnoticed, or were

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100

C
u

m
u

la
ti
v
e

 p
e

rc
e

n
ta

g
e

Number of session resets per peer per month

Before 2002.11
2002.11 to 2006.11

After 2006.11

(a) Num. Session Resets

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Silence Period (Seconds)

Before 2002.11
2002.11 to 2006.11

After 2006.11

(b) Silence Period

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

Recovery Period (Seconds)

Before 2002.11
2002.11 to 2006.11

After 2006.11

(c) Recovery Period

Figure 3.15: Impact of disabling keepalive timer, RRC00.

eventually detected by external signals such as TCP errors, at much later time.

Figure 3.15(c) shows the cumulative percentage of recovery time for session

resets. We observed that disabling BGP timers did change the distribution of

recovery time. This seems counter-intuitive because Keepalive/ Holddown timers

are expected to only affect the silence time but not the recovery time. One possi-

ble explanation is that, though disabling timers does not change the recovery time

for a given session failure, it could potentially change the visibility of some session

failures. More specifically, [47] observed that session failures can mainly be cate-

gorized into 4 groups. The first and second groups contains failures such as admin

31

resets and peer closed sessions, these types of resets can recover fast. The third

group contains local holddown timer expired, which results in moderate downtime.

The fourth group contains local router shutdown and peer de-configured, which

have very long recovery times. As a result, disabling Keepalive timers would make

a BGP session blind to the third group of failures, and skew the distribution of

recovery time towards the other three groups, which have either much shorter

or longer recovery times. This explains the increase in percentage of both short

recovery times and long recovery times in Figure 3.15(c).

In this section, we analyzed RIPE BGP data to show that disabling Keepalive

timers indeed reduced the number of session resets. At the same time, it also led

to a long-tail distribution of session silence time, during which session failures

went unnoticed and real BGP updates were lost. Thus we recommend not to

disable Keepalive and Holddown timers, even though this is allowed in the BGP

specification [35]. In addition, when interpreting historical RIPE data, users need

to be aware that long silence times might be the result of unnoticed BGP session

failures, rather than live BGP sessions suddenly became quiet.

3.4 Summary

In this chapter, we report the first systematic assessment on the BGP session

failures and the associated delays of RouteViews and RIPE data collectors over

the eight years. The results show that failures of the BGP monitoring sessions

are relatively frequent, averaging a few session resets per monitor per month.

How to make BGP sessions robust against transient packet losses remains an

open problem both in BGP monitoring projects and operational networks. The

measurement also shows that failures local to the data collectors contributed be-

tween 14% to 37% of the total session resets. Although some cases could be due

32

to intended administrative maintenance, they nevertheless affect the quality of

the data being collected. In the process of analyzing BGP session resets using the

historical data, we also found that disabling BGP’s Keepalive timer leads to nega-

tive consequence of unnoticed session failures. We proposed an efficient algorithm

to detect ISP peers that turned off BGP timers. Users of historical RIPE BGP

data should take into account the potential long downtime and missing updates

for the affected peers in order to achieve reliable results. More importantly, this

chapter shows the prevalence of BGP transport delay and raises an important

open question: What are the causes behind the slow table transfer duration? For

the rest of this dissertation, the main task is to explain these BGP transfer delay

times.

33

CHAPTER 4

Diagnose BGP transport problems

In Chapter 3, we make a common observation that BGP table transfer is slow.

The observation is prevalent across BGP data collected at different topological

locations. In this chapter, the main idea is to search deeply from the TCP

perspective, the explanations behind BGP slow transfers. This is challenging

as virtually no BGP over TCP data is publicly available at the time of this

study. Also, researchers commonly do not have direct access to the operational

routers nor the router source code. As a result, BGP researches mostly focus on

understanding BGP application level behaviors using BGP data [7, 36, 48, 52], 1

or study BGP transport issues using controlled environment or simulations [12,

15,49].

In this chapter, we seek to identify actual transport problems by leveraging

TCP trace provided by one courtesy large service provider and RouteViews. We

first discuss our approach and data sources, and then report a number of identified

BGP transport problems. To clarify, the analysis in this chapter does not intend

to be complete nor system-wise prevalent, as the dataset inherently represents a

limited view of the entire BGP network. The goal is to demonstrate the real on-

going problems that otherwise run unnoticed, and discuss their impact on BGP

research and operations.

1collected by RIPE [28] or RouteViews [38] as mentioned in Section 2.3

34

������

����	
���
��� ����

����	
����

����

��������

��	��������

����	��

��	���������

����	�

Figure 4.1: ISPA and RouteViews BGP monitoring.

4.1 Data Characterization

We first describe the data collected and its high level flow characteristics.

4.1.1 Datasets

We use BGP and TCP data collected at a large ISP (ISPA) and the Route-

Views [38] project. The collection setting is similar to the BGP monitoring set-

ting discussed in 2.3. As depicted in Figure 4.1, BGP data collectors are deployed

to peer with operational routers and passively receive BGP messages.

ISPA deployed, at the same site, one Vendor collector and one Quagga col-

lector, while the Vendor collector only collected data from one year from 2008

to 2009. Each BGP collector peers with around 25 BGP routers, including the

closest router in the same pop to the farthest one in a different continent. Route-

Views deployed multiple collectors across the Internet, the particular one used in

this work is a vendor collector located in University of Oregon, Eugene, USA.

As shown in Figure 4.2, in addition to BGP update collection, a TCP packet

sniffer (tcpdump) is deployed in front of the collector, and records the pass-

through traffic in both directions. The whole packet, including the headers and

35

������

����������	
������

�������

���		�

�������
���

�������

���

�����

���
��		�����

���������

������

��
����

��
����������
���

�����

Figure 4.2: BGP/TCP data collection.

data, is captured. We notice that tcpdump can sometimes drop packets and leaves

void periods in the trace. We exclude those periods from the following analysis.

Note that the collectors do not announce routing information; thus, only the

packets from the operational routers to the collectors carry actual BGP updates.

In the following description, we refer an operational router as Sender, the BGP

collector as Receiver, and the TCP sniffer simply as Sniffer. The recorded TCP

connection contains both the Sender-to-Receiver data packets and Receiver-to-

Sender ACK packets.

Table 4.1 summarizes the basic information of the collected traces. We further

separate the ISPA traces based on the collector type. For each trace, we pinpoint

the periods of BGP table transfer with the following steps. (i) From the tcpdump

trace we first extract individual TCP connections, together with basic connection

profiles, including the connection start time, end time, estimated round-trip time

(RTT), maximal segment size (MSS), etc. (ii) Based on the TCP connection

start time, which also indicates the start of the BGP table transfer,2 we then

turn to the BGP archive and apply MCT [52] to identify the end of BGP table

2A BGP table transfer starts right after establishing the TCP connection [35].

36

Table 4.1: Summary of BGP/TCP datasets

Trace Duration Collector # Pkts/Bytes # Rtrs Data # Table

(M/GB) PCAP/MRT Trans.

ISPA-1 2008.05 ∼ 2009.04 Vendor 1023 / 218 24 Yes / - 10471

ISPA-2 2008.05 ∼ 2009.04 Quagga 909 / 138 27 Yes / Yes 180

2009.09 ∼ 2010.09 1296 / 219 219

2010.11 ∼ 2011.01 492 / 81 37

RV 2010.11 ∼ 2011.01 Vendor 176 / 47 59 Yes / - 94

transfer. Different from [52], which runs MCT on every BGP message and is

intractable in this work due to a huge data volume; here we use TCP start

time as an indicator to quickly locate the occurrences of a table transfer, and

only use MCT to estimate the duration of the BGP table transfer. This greatly

reduces the processing time. (iii) For the vendor traces that do not offer the

BGP data archive, we develop a side tool, pcap2bgp, to reconstruct TCP data

stream from the raw packet trace and extract BGP messages. This side tool

could run either online or offline and takes care of the TCP out-of-order delivery

and retransmissions. Then we apply MCT on the extracted BGP messages as in

the previous step.

The number of identified BGP table transfers (listed as the last column of

Table 4.1) ranges from tens to a few hundreds in each trace. One exception is

the ISPA-1 (Vendor) trace, which contains an alarmingly high number of table

transfers. We confirmed with the operator that this is due to a vendor bug which

triggered frequent BGP session resets.

4.1.2 Flow Level Characteristics

Before we delve into the detail TCP trace, in this section we first analyze, for

BGP over TCP connections, the four basic flow (or connection) characteristics,

37

(a) Internet flows [22]

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

log(Duration) (second)

BGP
Table Transfer

Inc. Updates

(b) BGP flows

Figure 4.3: Distribution of flow duration

namely duration, size, rate, and burstiness. In previous works, Lan et al. and

Qian et al. have studied the flow characteristics of long-lived Internet flows [22,33].

Note that BGP generally runs internally in ISPs and was not included in their

work. Here, we extend the previous analysis with new results of BGP or TCP

connections. We calculate the flow characteristics, and then compare to the four

Internet flow types coined in [22]: tortoise, elephant, cheetah, and porcupine,

corresponding to the “flows with duration, size, rate and burstiness greater than

the mean plus three standard deviation of the respective flow measurement” [33].

Also, in addition to per TCP connection analysis, we separate a TCP connection

into table transfer and incremental update periods, (i.e., based our identified table

transfer period), and measure the flow characteristics respectively.

We first present the distribution of BGP connection duration. Figure 4.3(a)

and Figure 4.3(b) show the duration distribution of Internet flows presented in

[22] the our result of BGP flows, respectively. As expected, the BGP flow duration

is much longer (3 orders of magnitude) than even the longest Internet connections

(i.e., tortoise). Note that for Internet flows, there is a cap of flow lifetime at 2

hours due to the record duration in [22], but this contributes to less than 10%

38

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4 5 6 7

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

log(Size) (KB)

e
l
e
p
h
a
n
t

t
o
r
t
o
i
s
e

c
h
e
e
t
a
h

p
o
r
c
u
p
i
n
e

a
l
l

BGP
Table Transfer

Inc. Updates

(a) Size

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 0 1 2 3 4

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

log(Rate) (KB/second)

e
l
e
p
h
a
n
t

t
o
r
t
o
i
s
e

c
h
e
e
t
a
h

p
o
r
c
u
p
i
n
e

a
l
l

BGP
Table Transfer

Inc. Updates

(b) Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
t

log(Burstiness) (KB)

e
l
e
p
h
a
n
t

t
o
r
t
o
i
s
e

c
h
e
e
t
a
h

p
o
r
c
u
p
i
n
e

a
l
l

Train Burstness’
BGP

Table Transfer
Inc. Updates

(c) Burstiness

Figure 4.4: Distribution of size, rate, and burstiness of BGP and Internet flows

of the tortoise flows. Note that the BGP connection duration is by and large

determined by the incremental update period. The table transfer period generally

finished in tens to hundreds of seconds. Also for BGP distribution, there exist

vertical jumps in the distribution curve. These are the cases of collector failures

as discussed in Section 3.3.1, in which multiple TCP connections reset at the

same time and result in similar flow durations.

In Figure 4.4, we overlay the results of BGP flows on top of Internet flows

from [33] 3 for ease of comparison. As shown in Figure 4.4(a), BGP connections

3We obtain the data points from the authors and re-plot the figure

39

send more data than the Internet elephant flows; the difference is in two to

three orders of magnitude. Similarly, the incremental update period contributes

to more traffic due to long duration. The table transfer period contribute to a

stable amount of data, corresponding to the BGP routing table size, which slowly

increases in a long term. At the time of this writing, a full BGP routing table

contains 370K prefixes, which roughly correspond to 8MB to 10MB worth of data

(∼ 95 percentile of both the elephant flows and BGP flows).

For BGP flows, Figure 4.4(b) shows that the transmission rate of table transfer

is relatively high, while that of incremental update is low. This is as expected,

as during the incremental update period, BGP (and TCP) only sends data upon

occasional routing events, and the transmission rate is amortized by the idle

periods between events. Note that TCP transmission rate also depends on the

underlying link speed, which we could not know and directly compare. But

generally we observe that BGP table transfer is slightly slower than the fastest

Internet cheetah flows, while the increment update is about the same speed with

the porcupine flows.

Last, we measure the burstiness of a BGP flow by multiplying the average

update burst rate by the inter-burst time [22]. Figure 4.4(c) shows that the

incremental update period is burstier than the table transfer. For the top 40%

of BGP incremental update periods, the burstiness distribution aligns with the

distribution of the porcupine flows, which are the burstiest Internet flows. On

the other hand, the table transfer period, though has a high transmission rate,

has pretty low burstiness ratio.

Similar to [22] and [33], we observe correlations between the flow character-

istics (shown in Table 4.2). For the table transfer periods, the flow duration and

flow rate have the correlation coefficient around -0.74, while the flow size and rate

40

Table 4.2: Correlation between flow characteristics

Duration,Rate Size,Rate Duration,Size

Table transfer -0.748 0.782 -0.171

Inc. updates 0.087 0.274 0.982

Qian et al. [33] -0.69∼-0.60 0.54∼0.57 0.21∼0.40

have the correlation coefficient around 0.78. This reflects the bulk transfer nature

of BGP table transfer. On the contrary, The incremental update period does not

have such correlations. Instead, it has positive correlation between the flow du-

ration and flow size (with coefficient 0.98). This reflects the another fact that the

incremental update period terminates on failures; the flow size is proportional to

the flow duration, and rather independent to the transmission rate.

To summarize our observations. We compare the high level flow characteristics

of BGP with those of Internet flows. The results illustrate the unique distinction

between BGP’s two phases: the initial short bulk table transfer and the long low

rate update exchange. This also implies that specific TCP tunings for either phase

might not work well for BGP over TCP connection. In the following sections,

we focus on investigating the table transfer period, with the goal to reveal the

potential transport issues and delay times.

4.2 Identify BGP Transport problems

In Figure 4.5 we plot again the distribution of the table transfer duration, but

separately for each trace in a finer scale. The majority of the table transfers

finished within a few minutes. The table transfers of the ISPA (Quagga) and

RouteViews tend to take longer time to finish, with 50-percentile at 2.5 minutes

and 80-percentile at 5 minutes. We can also observe that some table transfers

took longer than 10 minutes. This is generally slower than one would expect:

41

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

Duration of Table Transfer (seconds)

ISPA (Vendor)
ISPA (Quagga)

RV

Figure 4.5: CDF of table transfer duration

considering the amount of data to send (i.e., 5 ∼ 8 MB for the full BGP table)

and the underlying link bandwidth (i.e., up to tens of Gbps in ISPA), table

transfers shall finish mostly in a few seconds. Previous works have made similar

observations that table transfers can take even up to tens of minutes [7, 15].

Note that each router’s table transfer duration can be different due to its

distance (hops, RTT) to the collector. For each router-collector pair that has

more than two table transfers, we calculate the stretch ratio, defined as the longest

table transfer duration divided by the shortest one. We check and make sure that

these two transfers carry similar amount the data. A high ratio indicates that the

table transfer duration is significantly stretched, for some reason, while sending

the same table. Figure 4.6 shows the results. We observe that in general, a router

could send a routing table 2 to 5 times slower compared to its own fastest one

(22%, 59% and 100% respectively for the three traces). The stretch could be

more than an order of magnitude for the distribution tail.

To identify potential causes of the slow times, we inspect the TCP packets

exchanged in the table transfer. Given that it is nearly impossible to check

all table transfers individually, we take for each router, slow table transfers,

42

 0

 20

 40

 60

 80

 100

 1 5 10 15 20 25

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e

Duration Stretch (max/min duration)

ISPA (Vendor)
ISPA (Quagga)

RV

Figure 4.6: Stretch of table transfers

Figure 4.7: Screenshot of BGPlot

whose duration are longer than the average transfer duration plus three standard

deviations. If no such slow transfer exists, the router’s slowest table transfer is

selected instead. We ended up with investigating of 172 table transfers. For

these slow tables, we develop and use a visualization tool (BGPlot) to fast locate

interesting TCP events (retransmissions, out-of-order packet delivery, duplicate

acknowledgment, etc.). Then we develop corresponding scripts to quantify the

occurrences or identify the cause of problem. Figure 4.7 depicts a screenshot

of BGPlot. In the plot, the tool shows a sample TCP connection with multiple

packet retransmissions.

43

Table 4.3: Observed transport problems
Observation Potential Cause

1 Gaps in table transfers Timer implementation [15]

2 Consecutive retransmission Bursty BGP dynamics [31]

3 BGP peer-group blocking BGP scaling feature [53]

4 Misc. issues Bugs, delay acks, etc

Table 4.3 lists the transport issues we identified from the table transfers.

For each problem, we discussed with the operators and vendors to find the root

causes, which range from implementation bugs to router specific features. In the

following discussions, we skip miscellaneous minor problems due to the limited

space. We emphasize that the analysis in this section does not intend to be

complete nor system-wise prevalent , as we only study the sample table

transfers, and our dataset inherently represents a limited view of the entire BGP

network. Our goal is to demonstrate the real on-going problems that otherwise

went unnoticed, and discuss their impact on BGP research and operations, which

highlights the necessity of a new tool for systematic analysis.

4.2.1 Gaps in Table Transfers

Houidi et al. [15] investigate the slow table transfer problem. They observed that

the sender regularly stops sending routes to the receiver and creates gaps in the

table transfer. Through experimenting in a testbed with routers from 3 vendors,

they show that the gaps are caused by the undocumented timer-driven router

implementation, which results in sending a limited number of messages per timer

expiration.

In our dataset, we make similar observations. Figure 4.8 shows an example

piece of one BGP table transfer that contains the prolonged gaps (i.e., much

longer than the RTT) between packet transmissions.

44

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12

S
e
q
u
e
n
c
e
 (

/1
0
0
0
)

Time (sec)

packet
ack.seq

Figure 4.8: Gaps in table transfers

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

S
e
q
u
e
n
c
e
 (

/1
0
0
0
)

Time (sec)

packet
Retransmission

ack.seq

Figure 4.9: Consecutive packet retransmissions

However the distribution of gap length is less regular compared to the testbed

results reported in [15]. We observe various gap lengths of tens of milliseconds up

to a few seconds. Note that table transfers studied in this work are captured from

actual operational networks, and could be affected by various factors, including

the router load, end-to-end network path, traffic level, etc. Moreover, we checked

multiple table transfers from the same router or across different routers, and find

that the presence of the gaps is not always pronouncing. Compared to [15] which

shows that gaps can represent more than 90% of table transfer time, instead

we observe that table transfers could be still slow without suffering from such

timer gaps. This motivates our search on other explanations for the slow transfer

described in the following sections.

45

Table 4.4: Retransmission Deley of BGP updates (seconds)
Timestamp Delay Prefix Path

1235728588 1 66.154.112.0/24 19080 22298 30092

1235728588 1 66.154.104.0/22 19080 22298 30092

...

1235728592 4 138.247.0.0/16 1239 13576 14263 23122

1235728592 4 205.151.56.0/24 174 16532

...

1235728597 9 206.209.232.0/21 7018 16910

1235728597 9 219.239.44.0/23 10026 7497 7497 7497 17964

...

1235728601 13 92.255.72.0/22 8342 20632 47168

4.2.2 Consecutive Retransmissions

In our dataset, another common observation is the consecutive packet retrans-

missions (or packet losses) in a short period of time. Figure 4.9 shows an example

of TCP connection that experiences two episodes of consecutive packets retrans-

missions. Table 4.4 lists BGP updates received during the first loss episode.

Note that the router attempted to send all these updates at the same time at

1235728587 (unix timestamp), but due to packet losses and retransmissions, they

arrive at the receiving BGP with different delay, from 1 to 13 seconds. Without

inspecting the packet trace, these delay gaps could be falsely attributed to the

result of BGP protocol dynamics.

Generally, multiple packet losses could occur along the congested network

path. Here, we further differentiate packet losses that happen locally to the

receiver, but not somewhere deep in the network. This is made possible due to

the fact that Sniffer is immediately next to Receiver.

4.2.2.1 Sender-side loss (Multiple out-of-order packets)

To find local losses, we first check whether a packet is lost between Sender and

Sniffer (i.e., upstream), or Sniffer and Receiver (i.e., downstream), respectively.

The idea is based on classifying the packet retransmissions [18]: if a retrans-

46

mission is due to the loss between Sniffer and Receiver, then Sniffer would first

see a packet that is not acknowledged in time by Receiver.4 Later, the Sender

sends another packet with the same sequence number. We then mark the second

packet as a retransmission due to downstream losses. Given that Sniffer is sim-

ply co-located with Receiver, these downstream losses shall occur locally, either

at the Sniffer-to-Receiver link or at Receiver’s interface. Figure 4.10 depicts an

example connection. As shown in the figure, the sniffer sees a complete packet

flight (the left-most one), but multiple packets are lost between the sniffer and

the receiver (i.e., the Receiver only acknowledges up to half of the flight). This

triggers multi-rounds of successive retransmissions.

4.2.2.2 Receiver-side loss (Multiple retransmissions)

On the other hand, if a retransmission is due to the loss between Sender and

Sniffer, the sniffer would not see the dropped packet, but many out-of-order

packets following the missing sequence gap. Figure 4.11 depicts such an example

connection. We then mark these retransmissions as due to upstream losses. How-

ever, in this case, we could not further tell whether the packets are lost at the

sender side or along the path. Out of the 172 sample table transfers, we checked

that 27 (15%) and 35 (20%) tables have experienced consecutive upstream and

downstream (receiver-local) losses respectively.

The problem of BGP scalability and local losses has long been recognized

[9, 31, 53]. In large networks, a BGP router peers with tens and up to hundreds

of neighboring routers [8, 31]. Upon massive route changes (i.e., router or link

failures, scheduled maintenance, etc.), the router could send thousands of route

updates to all its peers at the same time. In our dataset, this usually results in

4Either because the packet is lost from Sniffer to the Receiver, or the ACK is lost in the
opposite direction

47

0

20

40

60

80

100

120

140

T
C

P
 S

e
q
.(

/1
0
0
0
)

Time

Packets
Retransmission

adv.seq
ack.seq

Figure 4.10: Downstream (Receiver-local) consecutive losses

0

20

40

60

80

100

120

140

160

180

T
C

P
 S

e
q
.(

/1
0
0
0
)

Time(sec)

Packets
Retransmission

adv.seq
ack.seq

Figure 4.11: Upstream consecutive losses

tens of thousands of packet exchanges (e.g., around 57K packets in one sample

instance). This can result in sustaining packet drops on router interfaces [10].

To alleviate this situation, router vendors suggested to increase interface buffer

size based on the number of BGP peers. However, as BGP peering is used with

an ever-growing number of neighbors to advertise an ever-growing number of

routes, the buffer space required may still increase far beyond the available router

resources. Note that this problem is not specific to BGP. Recent works report

similar phenomenon of TCP incast congestion in data centers, when multiple

synchronized servers send data to the same receiver concurrently [6, 45].

4.2.3 BGP Peer Group Blocking

This section describes an interesting syndrome captured specifically in the ISPA

settings. During the measurement period of May 2008 to April 2009, each oper-

ational router is configured to peer with both the Quagga and Vendor collector.

From the traces, we observe that two connections proceed in a lockstep. That is,

even with more pending updates to send, the faster connection often pauses and

48

waits for the slower one to catch up. We verified with the vendor and find that

this is due to a specific BGP peer-group feature [53]. The purpose is to group

together peers with identical outbound policies. The router then generates rout-

ing updates once, places in a common queue, and simply replicates the updates

to all group members’ TCP connections. Note that the queued common updates

would be cleared only after being successfully delivered to all peers. This reduces

the router processing load, but with the cost that the whole group is now dragged

down by the slowest member.

Our observation shows that the peer-group delay is generally in the order

of milliseconds, but it could be pathologically long upon connection failures as

depicted in Figure 4.12. At t1, an error occurred at the Vendor collector, causing

the router to keep retransmitting packets, but never being acknowledged5 till

the faulty BGP session eventually timed out at t2. We can see that, during the

whole retransmission period of the Vendor connection, the router also stopped

the transmission of the Quagga connection. The Quagga connection immediately

resumed after the Vendor connection timed out and was removed from the peer

group. Based on the BGP keep-alive and hold-down [35] timer setting in ISPA,

the timeout took 180 seconds (t1 ∼ t2) in this example and could have significantly

hampered the BGP convergence.

Not that such blocking is a common problem for applications which maintains

shared queues for better scalability. As an example, BGPMon [4], a new BGP

monitoring service which collects and provides real time BGP data stream to the

research and operation community, also recognizes this problem, and propose to

pace or even skip the update generation to mitigate the blocking effect.

5We suspect that it is due to a software bug

49

18 19 19 20 20 21 21 22 22 23

V
e
n
d
o
r

/
Q

u
a
g
g
a
 T

C
P

 c
o
n
n
e
c
ti
o
n

Time (minutes)

Vendor

Quagga

t1: Failure occurs t2: BGP timeout (TCP reset)

Retransmissions
BGP Keepalive

Packets

Figure 4.12: Session failures and Peer-Group blocking

4.2.4 Summary

In this section, we observe recurring BGP transport problems that went unnoticed

for months or over years. By further investigation, we find that these problems

are due to various causes, including bugs, implementation decisions, unexpected

effect of optimization features, etc. Interestingly, these problems, to some ex-

tent, escaped from the BGP router testing and monitoring, which highlights the

need for better BGP monitoring and analysis. In the following sections, we fur-

ther measure the occurrences of identified problems and quantify their potential

negative impact on the BGP transport performance.

4.3 Quantification Results

In this section, we measure how many (occurrence) and how bad (slowness) are

the identified transport problems.

First, based on our understanding of the transport problems, we design various

automatic detection algorithms. For example, to capture timer gaps in the table

50

transfer, we calculate the elapsed delay between the ACK and data packets,

and record the gaps if the delay is longer than 1.5 ∗RTT ; to capture consecutive

retransmissions, we maintain a sliding window, and see if more than 8 consecutive

packets in the window are retransmissions. We apply the algorithms on the TCP

trace, and measure the occurrence as the number of problems identified.

Next, measuring the slowness is more challenging, In [15], Houidi et al. use

TCP throughput model to establish a baseline for expected message delivery rate.

However, this does not work well here, as the TCP throughput model is derived

from long term TCP periodical oscillation, but in this work we focus on the short

term TCP performance, probably concerning only tens of packet exchanges.

In this section, we define and measure the slow times by calculating BGP

epoch slowness. A BGP epoch is a time period which contains a consecutive

train of BGP packets with Maximum Segment Size (MSS), which indicate a

burst of continuous BGP update transmission. BGP epochs are then separated

by sporadic smaller packets (i.e., idle times).

For each separated epoch, we calculate T+
e as the time for the whole BGP

epoch gets delivered. We then calculate Te by removing from T+
e the time intro-

duced by transport problems. The value Te is an estimation of the ideal epoch

duration assuming no transport problem in it. Last, we calculate slowness ratio

as T+
e −Te

Te
, which represents the extra delivery caused by transport problems. Note

that this proposed slowness ratio serves as a lower bound. Take packet retrans-

mission as an example, we consider the direct retransmission time but not the

following shrinkage of TCP congestion window. Our purpose is to demonstrate

the evidential impact caused by bad transport behaviors.

Because of the large volume of data, in the following section, we choose three

representative routers. These three routers have the same configuration, the only

51

Table 4.5: Target routers
geo. distances avg. RTT(ms) RTO(ms) Prefixes

R1 same city ∼ 150 ∼300 ∼ 303k
R2 same continent ∼ 200 ∼ ∼ 303k
R3 different continent ∼ 275 ∼ ∼ 303k

Table 4.6: Occurrence, 2009 March
R1 R2 R3

Vendor Qua. Vendor Qua. Vendor Qua.

Gaps in table transfers 245 1 234 27 60 3
Consecutive retransmissions 30 5 40 4 28 8

difference is their distance to data collector. Table 4.5 summarizes the basic

information of these three routers. We do not reveal the exact name/number

to confirm the usage term of dataset. We use 6 months of data starting from

September 2008, after the operator made a TCP configuration change to increase

TCP MSS and window size.

4.3.1 Measuring the Occurrence

In this section, we measure the occurrence of identified transport problems. Ta-

ble 4.6 shows the result of three routers in 2009 March. The Vendor session has

more timer gaps and retransmissions than the Quagga session. We check that

this is due to the fact that the Vendor session has more session resets.

Figure 4.13 shows the number of session resets of Vendor sessions over the

6 months period. The router R1 always has the most number of session resets

and there shows no correlation between the distance of routers and the number

of session resets. Figure 4.14 shows the number of consecutive retransmission

of Vendor sessions over the 6 months period. We observe that there are at

least 20 consecutive retransmissions losses every month, range from 20 to 60 per

month. Except 2008 November, during which there are lots of packet losses, we

52

R1
R2
R3

 0

 50

 100

 150

 200

 250

S
e

p

O
c
t

N
o

v

D
e

c

J
a

n

F
e

b

M
a

r

N
e

a
r−

to
−

d
e

a
th

 L
o

s
s
e

s

Time

Figure 4.13: Number of session resets

Sender−side losses
Receiver−side Losses

 0

 20

 40

 60

 80

 100

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

R
1

R
2

R
3

N
e
a
r−

to
−

d
e
a
th

 L
o
s
s
e
s

Time
Sep Oct Nov Dec Jan Feb Mar

Figure 4.14: Number of near-death
losses

Table 4.7: Slowness (R3)
Problem Tepoch(sec) Inc. Delay(sec) Slowness Ratio

Gaps in table transfers 39∼54 16.46 (23.44) +46% (+72%)
Consecutive retransmissions 2.2∼14.8 0.68 (4.06) +11% (+68%)

are investing the cause for such losses. Moreover, we observe similar number of

sender-side and receiver-side losses. But we do not draw conclusion from such

distribution, since our result is limited by the fact that the collector is deployed

at the receiving end, and thus we can capture all receiver-side losses but only

partial sender-size losses.

4.3.2 Measuring the Slowness

In this section, we measure the BGP epoch slowness of identified transport prob-

lems. Table 4.7 shows the results for R3 for illustration. We check that other

routers give the similar results.

Figure 4.15(a) and figure 4.15(b) show the slowness ratio for timer gaps and

consecutive retransmissions, respectively. We observe that the timer gaps have

more impact on the update delivery, with delay ratio from 40% to 50% in average.

while retransmissions delays the packets transfer for 10% to 50% in average. But

there are some pathological case for packet retransmissions to slow down a epoch

53

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Slowness Ratio (Slow table transfer)

R1

R2

R3

(a) Timer gaps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

Slowness Ratio (Bursty losses)

R1

R2

R3

(b) Consecutive retransmissions

Figure 4.15: Slowness

for up to 400%. Another interesting observation is that the result for three

different routers are quite similar. We believe that this is because these routers

all have the same configuration and the RTT (in the milli-second level) plays

little difference here.

Note that we could not quantify the exact impact of BGP peer-group blocking

since we do not have all data from every router in the same group. However, we

expect that impact of peer-group blocking shall be proportional to the number

of members in the group.

4.4 Discussion

In this section we discuss possible improvements and the lessons learned for the

identified transport problems.

4.4.1 Suggested Improvements

In Table 4.8 we list the fixes for each individual problem discussed in the previous

sections. First, in [15] Houidi et al. describe and evaluate several approaches

to mitigate the time gaps in the table transfer, including workarounds such as

54

Table 4.8: Improving BGP slow transport
Problem Improvements

Gaps in table transfers Houidi et al. [15]

Consecutive retransmissions TCP window validation [14]

BGP-aware TCP tuning

Peer Group blocking Dynamic re-grouping

modifying the router timer implementation, or increasing the TCP window size,

etc. We refer interested readers to their work for detail discussion.

Next, in the previous sections, we attribute TCP consecutive retransmissions

to a potential collective effect of BGP bursty workload, large number of peering

sessions, widely open TCP congestion window, and the mismatch between TCP

window size and interface buffer space. Among these factors, Handley et al. [14]

propose to decay TCP congestion window when the sender is idle or application-

limited for a sufficient long period of time. While this approach applies to general

TCP applications, it could be more effective to modify TCP congestion control

specifically to BGP protocol behaviors. For example, we can reduce the TCP

window size upon receiving Keepalive messages, given that a BGP router only

send Keepalive messages when there is not pending BGP update and the TCP

connection is idle.

Last, for the BGP Peer Group blocking problem. Note that the cause of the

blocking is that a peer group is simply configured by administrative export poli-

cies, without considering the heterogeneity among BGP sessions. In practice, an

administrators could configure a peer group based on the transport performance

(i.e. RTT between BGP peers, the underlying physical bandwidth) or the pur-

pose of sessions (i.e. monitoring or operation session, primary or backup). This

could prevent the negative impact due to slow group members.

55

Recently, a router enhancement is introduced to dynamically adjust group

members based on their real-time performance. A BGP router keeps monitoring

the transmission rate of group members; slow peers would be moved to a new

group, or merged back when they catch up back with the fast peers. There are a

few open issues. For example, this approach works better when there exist only

a few particular slow peers. Otherwise, if all BGP peers behave differently, then

many small groups could be created and introduce additional overhead.

4.4.2 Lessons Learned

In the previous sections, we report transport problems that impact the BGP

table transfer performance. We observe that these problems went unnoticed in

ISPA and RouteViews for months or even years. Here, TCP plays an impor-

tant role in reliably delivering BGP messages, and hides from BGP the details

of various lower layer bugs, bad parameter settings, transient network conges-

tion, etc. As a result, BGP only gets to see the prolonged delay in update

arrivals. However, this could be undesirable in that people may falsely attribute

the transport-induced delay to BGP’s distributed nature, and draw questionable

conclusions for the BGP convergence behavior, and overlook the necessity to

address the underlying transport problems.

We reiterate, to ensure our point is clear, that limited by the specific dataset,

here we do not target at finding all possible BGP transport issues. Instead,

the problems reported in this chapter, together with those of previous works

[15, 50, 54], serve as hard evidence that motivates us to answer the fundamental

question: how to detect and quantify transport problems more efficiently with-

out the tedious trace inspection? This is challenging as we learned that there

exist various reasons behind transport problems, which could result in complex

56

interaction between BGP and TCP.

To address this problem, in the following chapter we propose a reactive ap-

proach. That is, instead of searching for a seemingly impossible way to recognize

all unexpected transport problems, we focus on staying alert to their consequences

(i.e., suspicious delays) in the packet trace. We develop a delay analysis tool to

systematically measure and classify the transfer delays in TCP packet traces.

Users’ further attention and investigation are only needed when a significant and

suspicious delay factor has been reported.

57

CHAPTER 5

BGP Transport Delay Analysis

In Chapter 4, we discuss BGP transport problems, and the corresponding trans-

port delay observed in the BGP and TCP trace. In this chapter, we further

propose a new systematic analysis tool to capture such TCP transport delay and

identify reasons behind these delay times. The idea is inspired by TCP rate anal-

ysis [42, 55], which classifies the rate limit of TCP connection by factors such as

application, TCP end-points, and network paths. Based on a similar taxonomy,

the goal is an analysis tool which focuses on the different metric, namely transfer

delay, and identifies major contributing factors. We call the tool T-DAT (TCP

Delay Analysis Tool), named after T-RAT in [55], to make a simple yet clear

distinction.

5.1 T-DAT: TCP Delay Analyzer

Figure 5.1 illustrates the high-level T-DAT operations. The delay analyzer first

pre-processes the raw packet trace, collects the connection level information, and

restructures the trace if necessary (§5.1.2). Then, we transform the packet trace

into multiple event series, each is designed to represent one specific type of TCP

connection behavior (§5.1.3). Based on the event series, the tool measures the

transport-induced delay and classifies the delay factors similar to [55] (§5.1.4).

58

����������
��	��
��

��	���	�����

������	����	�����

�	��

������	��
��	���	�����

���
����	�	

�����	��

�������
��

Figure 5.1: High level T-DAT design

5.1.1 Series-based Structure for Delay Analysis

In this section, we first introduce an important time-range based data structure

used by the tool: POI series. More specifically, the main task of T-DAT is to

transform the packet trace into multiple POI series, and analyze the series to

infer the reasons behind transfer delay.

From the raw packet trace, consider the arrival of each packet (including

data and ACK) as an event that potentially affects the behavior of the TCP

end-points, such as a packet loss that triggers retransmissions, or an ACK that

changes the advertised window size. We call each event as a Point-of-Interest

(POI) and represent it with the 2-tuple notation (time range, event data). The

time range, represented as [start time, end time], records the event start and end

time in microseconds. The second field, event data, is a reference pointing to the

detail event data. POIs generated by the same event are then organized in an

ordered set of time ranges, i.e., a special set container in which each element is a

continuous time period. We name these sets as POI series.

One way to visualize the POI series is to present them using binary square

curves. Figure 5.2 gives a preview of the graphical output of the tool. Here,

the figure includes an example piece of input packet trace and multiple derived

output series, which represent different TCP behaviors. For instance, the se-

ries UpstreamLoss captures the retransmissions due to upstream packet losses.

Each of 9 packet retransmissions (shown as red triangles) in the TCP trace is

59

T
C

P
 t
ra

c
e

adv.seq
ack.seq
Packet

Retransmission

 0 1 2 3 4 5

P
O

I
S

e
ri
e
s

Time (sec)

Transmission time

Upstream loss

Downstream loss

Send App limited

Send TCP CWD bounded

Recv App limited

Recv TCP ADV bounded

Figure 5.2: Example TCP trace and POI series

represented by a corresponding time range (shown as 9 square waves), and the

duration of each wave indicates the retransmission delay introduced to the TCP

connection. In addition, each wave records the actual number of retransmitted

packets and bytes within itself (not shown in the figure). We would describe in

detail how to generate these series in Section 5.1.3.

Note that the set-based data structure enables both the high-level quantifica-

tion and detail inspection. On the one hand, measuring the gross-grain transfer

delay induced by a particular series is now equivalent to calculating the set size

(or set cardinality), which has been widely supported by software libraries. On

the other hand, the series faithfully preserve the exact packet timing information

as the raw trace. This provides essential cross-reference when we make interest-

ing high-level observations, and decide to further investigate in depth the TCP

packet trace.

60

5.1.2 Input: TCP Packet Trace

The analyzer takes as input the raw packet traces in pcap format, together

with connection level parameters, including the maximum segment size (MSS),

round trip time (RTT), maximal advertised window size,1 which we extract using

tcptrace [30]. We also use tcptrace to label packets such as retransmissions,

out-of-sequence, and duplicates.

5.1.2.1 Accommodate the Sniffer Location

Note that for the BGP monitoring trace used throughout this work, one important

limitation is that the sniffer is close to the receiver end, while the data

transfer by and large depends on the sender behavior. This is not a new

problem and the impact of the sniffer location on interpreting the TCP trace has

been widely acknowledged [17,42,55]. In previous works, the major concern was

how to estimate RTT at different sniffer locations.

Figure 5.3 illustrates the common idea of RTT estimation. When a sniffer

is in the middle of the TCP end-to-end path, the sender’s true perceived RTT

(in the left of Figure 5.3) is inferred as the sum of d1 and d2 ; each represents

one part the route-trip delay for Sniffer-to-Receiver and Sniffer-to-Sender [18].

Building upon this approach, our processing in this step to shift forward the

ACKs with the offset d2 to match their corresponding data packets (e.g., ACK1

→ ACK1’), such that the resulted new trace (i.e., the original data packets with

shifted ACKs) approximates the sender-side behavior. As shown in Figure 5.3,

the goal is to rewrite the packet-ack-packet arrival at the Sniffer from m1-m2-

m3 to m1-m2’-m3, which more accurately reflects the sender-side arrival s1-s2-s3.

Unfortunately, measuring d2 is challenging. Multiple ACK and data packets may

1advertised by the receiver

61

������ ������� �����	��

�������

��	�

��

��
������
 ��	�

�

�����

������

�������

�����������

���������������

��

��
��

��

���
��

��

Figure 5.3: Inferring the sender-side packet arrival

be concurrently in transmission, and often there is no clear association between

the ACK and the following data packets [18, 25,42,46],

Our observation is that, it could be easier and more accurate to measure d2 for

a group of ACKs, instead of each individual ACK. As the term flight is commonly

referring to data packets, here we use it to refer to ACKs that are sent back to

back within a group. In Figure 5.4(a), we mark a flight of n ACKs, Fi, together

with their estimated d2 delays, d21, d22, . . . d2n. Note that for d21 and d22,

the estimation is relatively accurate, as these ACKs explicitly free the window

space, which is soon filled by the data packets in the next round trip. On the

other hand, d2n is rather a loose estimation; the nth ACK could arrive anytime

between 0.04 ∼ 0.06 second and still leads to the same packet arrivals. Thus, the

idea is to shift the whole ACK flight with the most precise (shortest) d2 of each

ACK in the flight. The algorithm is summarized as follows. (i) Based on the

similar technique used in grouping data packets, we first separate ACK packets

into flights based on the inter-arrival time [55]. (ii) For each ACK in the same

flight, we then estimate its delay d2 and select the minimal, d2min, among all

62

d21

d23

d2n

Fi Fi+1

 0

 50

 100

 150

 200

 250

 0 0.01 0.02 0.03 0.04 0.05 0.06

S
e

q
u

e
n

c
e

 (
/1

0
0

0
)

Time (sec)

packet
adv.seq
ack.seq

(a) Original receiver-side packet trace

d2minFi Fi’
 0

 50

 100

 150

 200

 250

 0 0.01 0.02 0.03 0.04 0.05 0.06

S
e

q
u

e
n

c
e

 (
/1

0
0

0
)

Time (sec)

packet
shifted adv.seq
shifted ack.seq

(b) Shifted packet trace

Figure 5.4: TCP trace with the original and shifted ACKs

ACKs in the flight. Note that there exist different studies on measuring d2, we

implement an algorithm similar to the one described in [17]. (iii) Last, the whole

ACK flight is shifted with d2min (if it exists). Figure 5.4(b) depicts the shifted

ACK flight, F ′i .

To draw a clear distinction between the previous works, here we do not infer

the exact time that ACKs shall arrive at the sender (e.g., s2 in Figure 5.3).

Instead, we shift the ACKs forward in time with the purpose to explain the

following packet arrivals. This is essential to analyze concurrent data packets

from multiple senders arriving at the receiver. If the TCP trace is already taken

at the sender side, this step could be skipped, or safely executed without effect.

63

5.1.3 POI Series Generation

From collected packet traces, this section describes three fundamental techniques

that we use to generate POI series, namely extraction, interpretation, and oper-

ation, expressed with the following abstract rules:

(Extraction) series := func(trace) (5.1)

(Interpretation) series := series (5.2)

(Operation) series := func(series, · · · args, · · ·) (5.3)

series := series⊕ series · · · (5.4)

Internally, the analyzer generates 34 series. Some are intermediate and serve

only to derive other series. Due to the space limit, we describe only the represen-

tative series in the following discussion to illustrate the idea. Without otherwise

specified, the series mentioned but not discussed are assumed to be properly

generated using the techniques described in this section.

5.1.3.1 Extraction

First, we generate base series from objective observations, i.e., the events that

we can directly extract from the packet trace. As Rule 5.1 implies, this step

solely works on packet traces. This is possible because the information required

is coded in the protocol headers (IP or TCP) or lies in the packet arrival pattern.

Example series in this category include the series of the receiver window size, the

packet transmission and retransmission, and the outstanding packets, etc.

Transmission time. This series tracks the transmission duration, indicating

the time that TCP really spends on transmitting data packets. As shown in

Figure 5.2, this series usually contributes an insignificant amount of time, and

the inter-transmission gaps dominate the whole transfer period. The main task

of T-DAT is to construct different series to explain the reasons behind these

64

inter-transmission gaps.

Outstanding. This series tracks the number of outstanding packets/bytes and

the duration till they are acknowledged by the receiver, which is usually around

one round-trip time. The duration varies due to transient network or receiver

delay. This is a base series designed to answer questions about the number of

unacknowledged packets at any time instance.

Receiver advertised window. This series tracks the changes of the receiver

advertised window. Every time an ACK is observed, the advertised window size

and the inter-ACK time would be recorded. This represents the ever-changing

upper bound of the outstanding packets enforced by the TCP receiver flow con-

trol.

Upstream and downstream loss. These two series track the time the TCP

connection spends on recovering packet losses. We differentiate the upstream

and downstream losses using the idea described in Section 4.2.2. Note that the

upstream losses are detected by out-of-sequence packet arrivals, which could be

caused by actual in-network reordering rather than packet drops. We further filter

out those cases by implementing the algorithm in [18]. In Figure 5.2 we depict

both series. But in this example piece of connection, there exist only instances of

upstream packet losses. One important clarification to make is that these series

do not track the time instance at which the packets are dropped. Instead, they

capture the whole retransmission period spent in recovering the loss, which could

be surprisingly long depending on the retransmission timeout.

65

5.1.3.2 Interpretation

In this step, new series are not generated from the packet trace, but instead from

users’ interpretation of the existing series. More specifically, we clone an existing

series and annotate it with a more meaningful name with respect to our analysis

purpose.

Network and Sender/Receiver local loss. As described in Section 4.2.2, if

the sniffer is close to the sender side (e.g., neglectable d2 in Figure 5.3), then the

UpstreamLoss series also indicate the local packet losses at the sender. So we

construct series.

SendLocalLoss := UpstreamLoss

NetworkLoss := DownstreamLoss

On the other hand, if the sniffer is close to the receiver side (e.g., neglectable

d1), we construct another series to represent the receiver local loss with the

downstream loss.

NetworkLoss := UpstreamLoss

RecvLocalLoss := DownstreamLoss

One interesting question is how to know the location of the sniffer. Note that

it is possible to infer the location based on the inter-arrival time of packets and

ACKs (d1 and d2) [42]. For T-DAT, we leave this as a configurable setting, as-

suming that the user has prior knowledge of the data collection settings, including

the sniffer location. Moreover, the definition of local could be subject to users’

discretion. For example, suppose a case that the sniffer is at the ingress point

of a large local network. Then, even there could exist substantial delay between

the sniffer and the end hosts; the user may still consider the downstream (or up-

stream) losses as local to their own domain. We solicit from the users to specify

what to be considered as local.

66

5.1.3.3 Operation

In this step, POI series are generated based on operations among multiple series.

In this step, we introduce inferences and heuristics which are necessary to track

the TCP dynamic behavior (Rule 5.3).

Send application limited. Here we track the sender idle time, characterized by

the idle period between the moment the sender receives the ACKs and sends the

following data packets. We generate this series by checking whether the interval

between each outstanding period is much longer than RTT [55]. Figure 5.2 shows

three such idle instances in the trace (the middle line of Send App limited).

During these periods, the sender already received the ACK for all its outstanding

packets and is not bounded by the TCP windows. But the connection simply

remains silent as the application may not produce data fast enough [55] or subject

to the application rate limit [15].

Small/Large adv. window. These series track the size of advertised window,

specifically for the small and large open windows. While the former indicates

that the receiving application is unable to keep up with the sending rate and

closes up the advertised window, the later indicates the opposite meaning. We

consider the advertised window to be small or large if it is less than 3 ·MSS

or greater than the maximum advertised window - 3 ·MSS, respectively. The

threshold is adopted from [42,55].

Adv. bounded outstanding. This series is constructed from comparing the

Outstanding and Receiver advertised window series. The purpose is to track

the periods that the number of outstanding packets is bounded by the receiver

window. Note that in this case, rarely the outstanding bytes aligns perfectly with

the advertised window. In between there is always a small sequence gap, mostly

67

smaller than one MSS. We determine that the outstanding is bounded by the

advertised window if such difference is less than 3 ·MSS [42].

Cwd. bounded outstanding. This series tracks the periods that the outstand-

ing packets are bounded by the sender congestion window. We take as input the

Outstanding and Adv. bounded outstanding series. We consider a flight of out-

standing packets to be congestion window bounded if it is not bounded by the

advertised window, and another flight of packets are emitted immediately upon

receiving the ACKs of current flight.

For the example in Figure 5.2, before the retransmissions, we can see 6 flights

of outstanding packets that are bounded by the receiver window (shown as 6

square waves in the bottom curve). While during and after the retransmissions,

the outstanding packets become instead bounded by the sender congestion win-

dow (shown by the fifth square curve).

Last, we generate series by applying set algebra on existing series (Rule 5.4).

This is possible because all series are uniformly presented in sets of time ranges.

Small/Large Adv. bounded outstanding. We further differentiate, for the

Adv. bounded outstanding series, whether it is bounded by small or large receiver

windows, as they indicate different receiver behavior as mentioned previously.

With minimal effort, these series are generate by set intersection as the following.

SmallAdvBndOut := AdvBndOut ∩ SmallAdv

LargeAdvBndOut := AdvBndOut ∩ LargeAdv

Note that in this work, the series are designed particularly for the purpose of

delay analysis. T-DAT allows users to construct additional series for their specific

needs.

68

5.1.4 Output: Contributing Delay Factors

Last, out of 34 internal series, we arrive at 8 conclusive series, called delay factors,

corresponding to the limit factors proposed in [42, 55]: application limited, TCP

window limited, and network path limited. We extend the taxonomy with the

local packet losses as observed in our dataset.

For each factor, the tool outputs a quantitative measure delay ratio, defined

as the series size divided by the duration of analysis period (i.e., the BGP table

transfer duration in this work). Each ratio represents the fraction of time that

the TCP connection exhibits a specific behavior. A raw ratio vector is output for

a given analysis period.

−→
V = (r1, r2, . . . , r8), ri =

size(Factori)

AnalysisPeriod
, i = 1 . . . 8

In addition to the raw vector, we sort factors into three top level factor groups :

Sender, Receiver, and Network limited, based on whether each series represents

the sender, receiver, or network behavior. For each group, we calculate a group

delay ratio, defined by the union size of all series in the group, divided by the

analysis period. This results in a compact 3-vector, representing the fraction of

delay contributed by three top-level groups.

−→
G = (Rs, Rr, Rn), Rg =

size(
⋃
Factori)

AnalysisPeriod
, g ∈ {s, r, n}

For example, a vector (0.8, 0.1, 0.1) indicates that the sender-side factors col-

lectively accounts for 80% of the transfer delay. In the next section, we present

the classified delay factors together with the experiment results.

69

5.2 Analysis Results

We applied our tool on the three traces described in Section 4.1.1. In particularly,

we analyze the delay in the initial BGP routing table transfer [35]. The duration

of such a transfer represents the elapsed time spent to boostrap and converge the

routing state between neighboring BGP routers. Our object is to demonstrate

two different flavors of the tool on (i) surveying delay factors and (ii) identifying

specific known problems.

5.2.1 Identifying Major Delay Factors

In the first scenario, we assume that users do not have prior knowledge about

transport problems in their BGP table transfers. In this case, the delay analyzer

serves to advise for each table transfer its dominant delay factors. This sheds

light on where (sender, receiver, network) and which (BGP, TCP) could be the

potential reason of the transfer delay.

We apply the tool on all table transfers and collect the 3-vector group delay

ratios (Rs, Rr, Rn). We find that the network delay ratio, Rn, is close to zero

in most cases. Thus, in Figure 5.5 we depict the scatter plots for the sender

(Rs) and receiver (Rr) delay ratios. For the ISPA (Vendor) trace, we only show

the result for the period of March 2009 to May 20092; otherwise the data points

would be too crowded. We check other periods and the observation is similar.

Figure 5.5(a) shows that the ISPA (Vendor) table transfers are more bounded

by the sender-side factors, clustered between the ratio from 0.4 to 0.9. On the

other hand, the ISPA (Quagga) table transfer are bounded by either the sender

or the receiver-side factors (i.e., close to the line of x + y = 1). Also marked

in the figure is a sample table transfers bounded by the network factors. To

2includes 3038 table transfers

70

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e

c
e

ri
v
e

r-
s
id

e
 D

e
la

y
 R

a
ti
o

Sender-side Delay Ratio

Receiver failure
Sender + Session failure

(a) ISPA (Vendor)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e

c
e

ri
v
e

r-
s
id

e
 D

e
la

y
 R

a
ti
o

Sender-side Delay Ratio

Network.
 bounded

Receiver failure
Sender + Session failure

(b) ISPA (Quagga)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e

c
e

ri
v
e

r-
s
id

e
 D

e
la

y
 R

a
ti
o

Sender-side Delay Ratio

Receiver failure
Sender + Session failure

(c) RouteViews

Figure 5.5: Sender-side, receiver-side and network delay ratios of table transfers

understand the trend, we further infer whether a table transfer is triggered by

a sender or receiver failure using the method in [7], marked as the solid square

points. Figure 5.5 (a) and (b) show that the failing end could account more on

the table transfer delay. This is as expected in BGP. If a BGP router fails, it

would need to re-establish BGP sessions and exchange routing tables with all

its peers. This imposes much stress on the failing side and is likely to become

the bottleneck of table transfer performance. In Figure 5.5(c), we observe that

RouteViews table transfers have more spread-out delay ratios, which could be

due to the fact that, compare to ISPA, RouteViews monitors are from different

71

Table 5.1: Distribution of major delay factors for table transfers, with the thresh-
old of 30% transfer duration.

ISPA ISPA RV
(Vendor) (Quagga)

Table Transfers 10396 436 94

Sender-side limited 8525 295 79
Receiver-side limited 4210 242 40
Network limited 24 10 13
Unknown 20 5 2

Breakdown of Sender-side factor group

BGP sender app 5740 266 28
TCP congestion window 2785 29 51
Local packet loss - - -

Breakdown of Receiver-side factor group

BGP receiver app 3391 204 0
TCP advertized window 758 37 24
Local packet loss 61 1 16

Breakdown of Network factor group

Bandwidth limited 1 2 0
Network packet loss 23 8 13

vendors and managed by different ISPs all over the Internet. This is subjective

to future investigation.

Empirically, we say that the sender-side factors (as well as the receiver-side

and network factors) are major if they collectively accounts for more than 30% of

the table transfer duration (i.e., delay ration > 0.3). We choose the 0.3 threshold

to allow more than one major factors been selected for a table transfer, which is

rather common based on our observations. Table 5.1 shows that the sender-side

factors are the most prevalent, identified as the major factors for 83%, 67%, and

84% of table transfers in the three traces respectively. The receiver-side factors

are the second most common, identified as the major factors of 42%, 61%, 43% of

table transfers. The network factors dominate a relatively small number of table

transfers. There are also a few cases that we do not find a major factor.

For each major group, Table 5.1 further shows the breakdown results for in-

72

dividual factor. In ISPA, more table transfers are limited by BGP than by TCP,

with ratios between 2:1 and 7:1. This observation holds for both the sender-side

and receiver-side limited table transfers. Though infrequently, we also observe the

evidential impact of receiver local losses on 62 table transfers. Interestingly, the

results for RouteViews shows that TCP, on the contrary, is more prevalent than

BGP, especially for the receiver-side limited table transfers. One possible expla-

nation is the different settings of TCP maximal advertised window: ISPA uses

65KB while RouteViews use a much smaller 16KB window which is more likely

to limit a connection at the TCP transport level. Another possible reason is

that in our dataset, the ISPA collectors failed from time to time, which trig-

gered concurrent table transfers from multiple routers toward the collector. In

Figure 5.6, we show the effect of number of concurrent table transfers to the

receiving BGP and TCP delay ratio. We can observe that when less than 10

concurrent table transfers, the table transfers are slightly bounded by the TCP

receiver window. However, as the number increase, the BGP receiver starts to

become the bottleneck. Note that in the 3 month RV trace, we are not able to

find any case of high concurrent-number table transfers to make the same (or

different) observation. Last, for the network limited cases, the effect of packet

losses is more prevalent than the bandwidth. In fact, we expect none of the ta-

ble transfers should be limited by the more-than-sufficient link bandwidth in the

ISPA and RouteViews network. These three rare bandwidth-limited cases are

actually receiver-limited. They are falsely categorized because their whole table

transfer is TCP receiver flow controlled, and thus confuses T-DAT’s inference on

the link bandwidth. This would not happen as long as the table transfer includes

some non-receiver controlled periods.

Another question is the association of these factors with the table transfer

duration. Given the identified major delay factors, we re-plot the CDF of the

73

 0

 0.2

 0.4

 0.6

 0.8

 1

D
e
la

y
 R

a
ti
o

Number of Concurrent Table Transfers (RV)

BGP receiver limited
TCP receiver window limited

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

D
e
la

y
 R

a
ti
o

Number of Concurrent Table Transfers (ISP_A)

BGP receiver limited
TCP receiver window limited

Figure 5.6: Affect of concurrent table transfers

transfer duration in Figure 5.7. Overall, the table transfers limited by the TCP

receiver window have the shortest duration, followed by the ones limited by the

congestion window. This is because in these cases, TCP keeps pumping out pack-

ets roughly every RTT; only that the amount of outstanding packets is limited

by the window size, which is still relatively fast. Otherwise, if table transfers are

limited by packets losses (local or network), they waste time in TCP timeout and

retransmissions, which could take up to hundreds of seconds to finish. Generally,

the table transfers limited by BGP application processes could also have longer

durations, which reflects the processing limitation. One interesting difference lies

ISPA (Vendor), in which the application limited transfers are relatively fast. In

this case, we observe that if table transfer are throttled by the sending or receiv-

ing applications, the packets are sent with a lower and smooth transmission rate,

and are less likely to cause packet drops, which would otherwise result in much

longer delay as observed in ISPA (Vendor) trace.

74

 0

 20

 40

 60

 80

 100

 10 100 1000

Duration of Table Transfer (seconds)

BGP sender app

BGP receiver app

TCP congestion window

TCP advertised window

Receiver local packet loss

Network packet loss

(a) ISPA (Vendor)

 0

 20

 40

 60

 80

 100

 10 100 1000

Duration of Table Transfer (seconds)

BGP sender app

BGP receiver app

TCP congestion window

TCP advertised window

Network packet loss

(b) ISPA (Quagga)

 0

 20

 40

 60

 80

 100

 100 1000

Duration of Table Transfer (seconds)

BGP sender app

TCP congestion window

TCP advertised window

Receiver local packet loss

Network packet loss

(c) RouteViews

Figure 5.7: Table transfer duration by delay factors. Y axis is CDF

5.2.2 Revisiting the Transport Problems

This second scenario describes the usage of the tool on investigating known prob-

lems. That is, the users are aware of specific transport problems, and the purpose

is to check whether these problems do affect their BGP operations. In this case,

T-DAT facilitates the process by converting the raw packet traces into multiple

unified series of time ranges. The users then only need to focus on the relevant

series with respect to their analysis need. To demonstrate, based on our under-

standing of transport problems in Section 4.2, we develop the following algorithms

to identify and quantify them in the table transfers.

75

BGP timer gaps. To detect the repetitive timer gaps in table transfers, we

take the Send Application Limited series, which captures the periods that the

BGP sender remains idle. We then draw the length distribution of each gap in

the series. Figure 5.8 shows the gap distribution for one example table transfer

that contains 200ms timer gaps. The idea is that if a table transfer does contain

repetitive gaps due to a specific BGP implementation timer [15], there would be

a knee point in the curve indicating the timer value (e.g., the 200ms marked in

the figure). We use the method in [41] to automatically identify the knee point

and, thus, BGP timers. We found that the timer lengths (if exist) are around

a few specific values: 80ms, 100ms, 200ms and 400ms, while 200ms is the most

prevalent. Note that 200ms is the default timer used by a major vendor reported

recently in [15]. We did not verify as the authors had not revealed the actual

vendor. In Table 5.2, we list the number of table transfers in which we successfully

detect a pronouncing timer. Moreover, these timer gaps introduce 7.31 to 19.40

seconds of delay in the table transfer in average.

Consecutive packet losses. For this problem, we take as input all series that

are related to packet losses: SendLocalLoss, RecvLocalLoss and NetworkLoss. We

union these three series to construct a new series which captures all instances of

packet losses. From such series we check if there exist more than 8 consecutive

losses. We choose 8 as a conservative threshold which is sufficiently large to reduce

the TCP congestion window and the slow start threshold to the minimum 1 or 2

MSS, assuming the maximal 64KB window and the 1400 byte MSS. Surprisingly,

Table 5.2 shows that more than 20% of table transfers experienced at least one

consecutive losses. However, in ISPA, the incurring delay is relatively short with

the average around 5 seconds. This is the reason why we have detected many

cases of consecutive losses but they do not surface as the major delay factor as

76

Table 5.2: Identify problems and avg. delay described in Section 4.2.

ISPA ISPA RV

(Vendor) (Quagga)

BGP Table Transfers 10336 436 90

Timer Gaps 857 7.31 (s) 74 16.25 (s) 7 19.40 (s)

Consecutive losses 2092 5.14 (s) 176 4.52 (s) 29 31.15 (s)

BGP peer-group blocking 3 8 134.53 (s) 8 129.72 (s) 3 94.37 (s)

shown in Table 5.1.

On the other hand, the incurring delay is much longer in RouteViews with

the average of 31 seconds. We check and find that the RouteViews’ TCP connec-

tions back-off more aggressively. In many cases, the TCP retransmission timeout

(RTO) increases promptly to a few seconds after two or three timeouts. The

detected 29 cases match the number of loss-limited table transfers in Table 5.1

(16+13). Note that the TCP retransmission delay is contributed by various fac-

tors such as TCP versions, window size, RTO, etc. T-DAT can help detect the

delay, while investigating the causes of this delay is beyond the scope of this

paper.

Peer Group blocking. For this problem, we only focus on the pathological

blocking as described in Section 4.2.3. More specifically, we identify the cases that

the table transfer to a peer-group is completely paused or blocked because of the

failure of one member peer. During the pause, only the keep-alive messages are

periodically exchanged. Here, we take again the Send Application Limited series,

and find the suspicious long idle gaps that match the BGP keep-alive timers.

We then query the Outstanding series to make sure that only BGP keep-alive

messages are seen within the whole idle period. In addition, for ISPA trace from

May 2008 to April 2009, during which we have two collectors in the same peer-

group, we check if the other session has experienced packet losses and blocked the

group. This can be achieved by intersecting the series from two different TCP

77

connections as the following:

Quagga.SendAppLimited ∩ V endor.Loss or

V endor.SendAppLimited ∩Quagga.Loss

As shown in Table 5.2, we detect 8, 8, and 3 such cases in the table transfers,

which appears to be infrequent. However, note that whenever this problem oc-

curs, it introduce a long delay. This is because the paused table transfer resumes

only after the failed peer timed out and has been removed from the peer group.

Depending on the default BGP timeout setting, this would take about 90 to 180

seconds. Also note that the effect of this problem would be amplified by the

number of routers in the group, which ranges from several to tens of members in

the current practice.

We emphasize that without this delay analyzing tool, it is possible to directly

work on the raw packet trace and develop individual ad-hoc technique to cap-

ture table transfer problems. However, the tool offers a few unique advantages.

First, as demonstrated above, it allows the users to focus on the series (and the

associated BGP data transfer behavior) that are closely related to their specific

analysis need. Second, series are stored using the set data structure, for which we

provide a rich set of lookup and manipulation operations. Last, the set presen-

tation also facilitates the cross-connection inspection, which could be nontrivial

when working on several raw traces.

5.3 Discussion

We have presented the tool and the application results. In this section, we discuss

the limitation, T-DAT implementation and potential usage .

78

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

C
D

F

Gap length (msec)

Trace Timers (ms)

ISPA (Vendor) 200 400

ISPA (Quagga) 100 200

RouteViews 80 400

Figure 5.8: Infer BGP timers from the gap distribution

5.3.1 Source of Inaccuracy

As discussed earlier, the tool operates on analyzing the relative arrivals between

data and ACK packets. The inaccuracy of the results comes from two sources of

errors: (i) the uncertain information in the packet trace due to the sniffer loca-

tion, and (ii) the various heuristics introduced in the analysis algorithms. Un-

derstanding and quantifying these two errors individually are already challenging

and deserve their own research venues respectively in [17,25,46] and [18,42,55]. In

this work, we design the tool carefully to proceed in two separate steps. We first

rewrite the original packet trace to a new inferred sender-side trace when neces-

sary. Then the rest of the tool works strictly assuming the input of sender-side

packet traces. Such an isolation helps prevent the complicated aggregated effect

of these two error sources. This allows us to reuse many techniques and param-

eter settings established in previous TCP inference and rate analysis (described

along with the tool in Section 5.1), which we observe also work empirically well in

this work. As a future step, we expect to explore the effect of different parameter

settings, for both BGP and other application packet traces.

79

5.3.2 Prospective Usage

In addition, considering the proposed T-DAT as a generic tool, here we briefly dis-

cuss a few future applications. First, the tool can potentially help troubleshoot

the protocol implementation. Note that we generate POI series to represent

different states of a TCP connection. Our observation is that series themselves do

not always agree with each other. For example, in the dataset we find controver-

sial cases of slow TCP connections, which experience both zero receiver window

and persistent packet losses at the same time. This is suspicious in that packets

get constantly dropped even under low transmission rate. It turns out that the

sending TCP has an implementation bug: upon receiving a zero-window ACK,

the sender creates a 1-byte probe packet [32]. However, if another ACK arrives

again and opens up the window before the sender transmits the probe, the probe

gets incorrectly discarded by the sender. This triggers repetitive retransmissions.

We found that this bug was left in the operational routers for years. This tool

can help detect such a situation by intersecting the two seemingly conflict series:

ZeroAckBug := ZeroAdvBndOut ∩ UpstreamLoss

Second, the series data can serve as the sanitized input to other anal-

ysis studies. Currently, TCP analysis is mostly conducted on the raw packet

trace [17, 33, 42, 55], which can be less effective with respect to their goals. Qian

et al. [33] extract various non-RTT flow clocks caused by application timers.

Clearly, such application timers are often concealed by the much more pronounc-

ing RTT, and only reveal during which the connection is application limited.

Jaiswal et al. [17] proposed to infer TCP flavors by comparing the number of

outstanding packets against the projected congestion window size. The approach

is effective when a TCP connection is bounded by the congestion control, which

80

is, unfortunately, not always true throughout the connection lifetime. For these

two analysis, instead of processing the raw trace, it could be more effective to

take in as input the series SendAppLimited and CwdBndOut, which exactly point

to the periods of their research interests, respectively.

81

CHAPTER 6

Instrument the BGP monitoring

In previous chapters, we identified BGP transport problems and analyzed actual

transfer delays in a large operation network. However, this works does not in-

tend to cover all aspects of BGP transport behavior. First, given the current

distributed and heterogeneous BGP networks, these results show only a limited

view of the global routing system. Second, data captured for BGP monitoring

sessions, though essential to the research community, could not fully represent

the BGP sessions in operation. However, to clarify, this issue is not specific to

this work, but rather a common limitation of current BGP studies based on the

monitoring data. As an important contribution along the progress of this work,

we develop a series of software tools that augment the current BGP monitoring

practice, and allow in depth studies of BGP transport behaviors.

6.1 BGP Microscope

We put together a collection of analysis tools, named BGP Microscope, to inves-

tigate BGP transport behavior and help identify table transfer delays. Figure 6.1

shows the software components and the corresponding input and output data

flow. In this section, we briefly discuss each component. Note that all the tools

are available at http://irl.cs.ucla.edu/bgpmicro.

tcptrace’. The first component is a patched version of tcptrace [30]. The

tcptrace tool reads the given pcap file(s) and produce TCP connection infor-

82

http://irl.cs.ucla.edu/bgpmicro

���������

������	�

���

�����

�	��	

���

���

����

��

�������

����������

�����

	�����

��	�

����

���

������������

����

�������

���

������ ������

Figure 6.1: BGP Microscope components

mation, including connection life time, TCP segments sent and received, retrans-

missions, round trip times, window advertisements, throughput, and more [30].

It also produce a number of graphs for further analysis. In this work, we modify

the I/O processing of the tool to handle the huge data volume of our dataset.

mct’. the mct tool is used to extract the period of BGP table transfers out of

the stream of BGP updates message. Please refer to Section 3.1 and [7] for detail

descriptions.

pcap2bgp. pcap2bgp reads the given pcap file(s), assembles TCP data stream,

and extracts the embedded BGP messages. The tool understands TCP sequence

numbers and construct data stream regardless of TCP retransmissions, duplica-

tion, and out-of-sequence delivery. By default, the tool outputs BGP messages in

the plain BGP text format [39]. We also support to save BGP messages in MRT

format, which can be then read by common MRT parsers, such as bgpdump [3] or

bgpparser [16]. This is particularly useful if the BGP endpoints are commodity

boxes, which are not able to export BGP messages in MRT format.

T-DAT. The TCP delay analyzer is used to classify the delay factors for a TCP

connection. This is the main tool we used in Chapter 5. Note that the tool is

built around the idea of sets and time-ranges. We implement in Perl language

83

the time-ranges using integer. We convert the pcap second-based timestamps to

micro-seconds, and store them in the set container of big integers. Each set is

developed to support range query and update operations. We also implement set

operations, including set intersection, union, and complement.

BGPlot. The component BGPlot is an extended version of SCNMPlot [23], which

is in turn based on jPlot. SCNMPlot extends “the ability of jPlot by allowing

the user to overlay multiple plots in one view and remove color layers from the

individual plots”. In BGPlot, we add new features to help analyze BGP and

TCP data traces, including (1) parse and display BGP messages correlated to

TCP packets, and (2) synchronized time ranges of multiple plots.

6.2 Deployment

To our knowledge, most ISPs have deployed their internal BGP collectors to mon-

itor the BGP operation. It shall require minimal effort to record BGP and TCP

traffic together at the collector boxes and feed into the analysis tools for detail

performance analysis. At the time of this writing, we capture the BGP and TCP

traffic from a large ISP, RouteViews, and one UCLA core router. The data col-

lecting starts from May 2008, November 2010, and September 2011, respectively.

For the large ISP and RouteViews, we mirror the BGP traffic using an inline

network switch, while we use tcpdump on a PC-based router to capture UCLA

BGP traffic. Though we could not make public the saved data due to the usage

term of date source, our point is to show that recording TCP data is practical

and easy on top of the existing BGP operation. Lastly, note that the proposed

BGP Microscope is a tool set. It does not assume or require specific deployment

scenarios. However, to fully utilize the potential of the analysis tool, we suggest

establishing BGP sessions to the same router from two different monitor boxes,

84

preferably routers from different vendors. By monitoring two sessions concur-

rently, this deployment yields a unique advantage in finding transport problems

that could only be revealed by cross-checking two update streams.

85

CHAPTER 7

Related work

This work follows the lead of a few research threads.

7.1 BGP Monitoring Data Quality

The quality of BGP data collected by RouteViews and RIPE is far from perfect

due to measurement artifacts and missing data. Specifically, a number of previous

works have recognized the need to identify table transfers after monitoring session

resets. These table transfers, while contributing a large amount of data, are

essentially the monitoring artifacts and do not reflect the actual BGP behavior.

Wang et al. [48] use BGP session state message to identify the start of a

BGP session re-establishment but this works only for RIPE.1 Rexford et al.

[36] remove all duplicate BGP announcements from the update stream which

is an aggressive way to remove updates due to table transfers, though it also

removed real duplicates. Anderson et al. [1] identify table transfers using a rough

estimate, it splits the BGP update stream into 30-second bins and discards any

bin that contains more than 1000 prefixes. Zhang et al. [51] develop MCT to

accurately detect the occurring and duration of table transfers from BGP update

messages. All these efforts focus on cleaning up BGP data by removing table

transfer updates, rather than quantifying and understanding the table transfer

delay, which is the goal of this work.

1RouteViews data does not contain session state messages

86

7.2 Understanding BGP and TCP Interaction

The impact of the transport layer dynamics on the application performance has

widely been recognized and studied in the literature, including HTTP [44], video

streaming [19], online gaming [5], data centers [6], and file system [24], to name

a few. These previous works studied the mismatch between TCP and the appli-

cation usage patterns, quantify the performance impact, and commonly suggest

improvements or tunings for a particular application or TCP protocol. However,

until recently, there has been marginal attention to investigate the BGP over

TCP behavior.

Feldmann et al. [12] measure BGP pass-through times using controlled en-

vironment, and quantify the impact of pass-through delay on the overall con-

vergence time. Their work focuses on exploring the factors that introduce delay

within the routers’ internal processes. In contrast, this work studies the message

delay between two neighbor routers. Xiao et al. [49] model the BGP session

survivability under severe TCP congestion, and propose to improve BGP robust-

ness by more aggressive TCP retransmissions. Zhang et al. [54] demonstrate a

scenario of low-rate DoS attack to defeat TCP retransmissions and trigger BGP

session resets. Houidi et al. [15] examine the BGP slow table transfer caused

by suspicious gaps and find a potential cause to be the timer-driven router im-

plementations. In this work, we investigate the BGP traces collected from the

operational ISP and BGP monitoring networks. We confirm the observations

made in these previous works, and more importantly report additional transport

problems, which motivate our design of a new analysis scheme.

There are a few additional works addressing the BGP-TCP interaction from

different perspectives. Kong et al. [20] verifies the consistency between BGP

and captured TCP data and reports the deficiency in BGP data collection tool.

87

Instead of studying the TCP behavior, Fang et al. [11] propose to fundamentally

replace TCP with SCTP as the transport service to enhance the BGP session

stability and efficiency.

7.3 TCP Behavior Analysis

There have been several studies on analyzing the rate limiting factors of a TCP

connection. Zhang et al. [55] proposed to classify rate limiting factors as appli-

cation limit, congestion, TCP window, etc. The idea is to separate TCP packet

trace into flights, and test whether each flight is limited by specific factors. Sim-

ilar to this work, Siekkinen et al. [42] addressed this problem with a time series

approach, which offers a more detail quantitative score for the level of the limi-

tation. Compared to this, our work targets on a different measure, delay, driven

by our research context of analyzing BGP routing protocol, which concerns the

routing message delay. Also, previous works focus on analyzing limiting factors

for individual TCP connection. As we show in Section 4.2.3 that there could

exist intervention among BGP connections, this work offers to represent TCP

connections in unified time series, which enables efficient analysis across multiple

connections.

One similar work is TCP Critical Path Analysis (CPA) [2]. From TCP packet

trace, Barford et al. proposed to construct a path that connects data and ACK

packets based on the happen-before relationship. Then, each link on the con-

structed path indicates a particular type of delay. Note that the technique re-

quires to know in advance the sender’s TCP implementation and initial param-

eters to simulate accurately the change to TCP windows. Only TCP Reno is

illustrated and supported in [2]. T-DAT does not have this requirement. The

result may not be as precise as CPA, but can support common TCP versions that

88

adopt window-based congestion control (e.g., TCP Tahoe, Reno, New Reno).

89

CHAPTER 8

Conclusion

Owning to the distributed nature of the global BGP network and limitations of

existing BGP monitoring practice, understanding the BGP transfer delay, specif-

ically caused by the interaction between BGP and TCP, presents a considerable

operational and research challenge.

In this dissertation, we first report a systematic assessment on the BGP mon-

itoring session failures and table transfer delay of RouteViews and RIPE data

collectors over eight years. The results indicate the prevalence of BGP sessions

failures, averaging a few resets per monitor per month. How to make BGP ses-

sions more robust remains an open issue both for BGP monitoring projects and

ISPs. More importantly, the main point is to show that BGP table transfers

(i.e., massive update delivery) could be surprisingly slow. The observations are

made possible using the inference technique to identify table transfers from the

BGP update stream.

Further to understand the application level slow times, we collect and investi-

gate TCP traces in a large ISP and RouteViews. We successfully locate recurring

transport problems which result in prolonged BGP update delivery delay. Such

transport problems are due to various reasons, including router implementation

bugs, optimization features, and the interaction between BGP and TCP, to list a

few. In general, these problems would slow down the BGP update delivery by 10%

to 70%. Note that without the evidential TCP trace, these one-hop transport de-

lays could be overlooked and easily attributed to otherwise the system-wise BGP

90

slow convergence. Unfortunately, transport problems went unnoticed due to the

limitation of current application-level-only BGP monitoring settings, which high-

lights the need for a better monitoring practice to detect and analyze the TCP

transport delay.

Thus, stemmed from the venue of TCP rate analysis, we propose a new delay-

centric tool, T-DAT, to characterize various factors behind the transport delay,

which we believe is a significant step toward diagnose and improve the overall

BGP transport performance. We demonstrate the tool usage in identifying prin-

cipal delay factors as well as investigating specific problems in the BGP dataset.

Also, as T-DAT itself is designed as BGP agnostic, it can potentially analyze

other delay sensitive TCP applications.

We emphasize that, given the global scale and heterogeneous nature of the

current BGP network, this work may not answer all the questions of BGP trans-

port delay in the wild. As a major contribution, we propose an analysis tool

set, which enables systematic collection and analysis of the BGP transport be-

havior. The tool uses TCP packet traces, which can be collected passively and

requires no modification to the BGP operation. This offers a future opportu-

nity for both the operation and research community to better understand BGP

transport behaviors.

91

References

[1] David G. Andersen, Nick Feamster, Steve Bauer, and Hari Balakrishnan.
Topology inference from bgp routing dynamics. In Proc. of ACM SIGCOMM
Workshop on Internet Measurment (IMW), 2002.

[2] Paul Barford and Mark Crovella. Critical path analysis of TCP transactions.
In Proc. of ACM SIGCOMM, 2000.

[3] bgpdump.
http://www.ris.ripe.net/source/.

[4] BGPMon. BGP Monitoring System.
http://bgpmon.netsec.colostate.edu/.

[5] K.T. Chen, C.Y. Huang, P. Huang, and C.L. Lei. An empirical evaluation
of TCP performance in online games. In Proc. of the ACM SIGCHI, 2006.

[6] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.
Joseph. Understanding TCP incast throughput collapse in datacenter net-
works. In WREN ’09: Proceedings of the 1st ACM workshop on Research
on enterprise networking, pages 73–82, New York, NY, USA, 2009. ACM.

[7] Pei-chun Cheng, Xin Zhao, Beichuan Zhang, and Lixia Zhang. Longitudinal
study of BGP monitor session failures. SIGCOMM Comput. Commun. Rev.,
40, 2010.

[8] J. Choi, J.H. Park, P. Cheng, D. Kim, and L. Zhang. Understanding BGP
Next-hop Diversity. In Proc. of IEEE INFOCOM Workshop Global Internet
Symposium, 2011.

[9] Troubleshooting High CPU Caused by the BGP Scanner or BGP Router
Process. [online] http://www.cisco.com/application/pdf/paws/107615/

highcpu-bgp.pdf.

[10] Understanding Selective Packet Discard (SPD).
[online] http://www.cisco.com/image/gif/paws/29920/spd.pdf.

[11] Kevin Fang Fan and Feng Cai. BGP-4 message transport
over SCTP. [online] https://datatracker.ietf.org/drafts/

draft-zhiyfang-fecai-bgp-over-sctp/, 2008.

[12] A. Feldmann, H. Kong, O. Maennel, and A. Tudor. Measuring BGP pass-
through times. Lecture notes in computer science, pages 267–277, 2004.

92

http://www.ris.ripe.net/source/
http://bgpmon.netsec.colostate.edu/
http://www.cisco.com/application/pdf/paws/107615/highcpu-bgp.pdf
http://www.cisco.com/application/pdf/paws/107615/highcpu-bgp.pdf
http://www.cisco.com/image/gif/paws/29920/spd.pdf
https://datatracker.ietf.org/drafts/draft-zhiyfang-fecai-bgp-over-sctp/
https://datatracker.ietf.org/drafts/draft-zhiyfang-fecai-bgp-over-sctp/

[13] Lixin Gao. On inferring autonomous system relationships in the Internet.
ACM/IEEE Transactions on Networking, 9(6):733–745, 2001.

[14] M. Handley, J. Padhye, and S. Floyd. TCP Congestion Window Validation.
RFC 2861 (Experimental), June 2000.

[15] Zied Ben Houidi, Mickael Meulle, and Renata Teixeira. Understanding Slow
BGP Routing Table Transfers. In Proc. of Internet Measurement Conference
(IMC), 2009.

[16] IRL. BGP parser.
http://irl.cs.ucla.edu/software/bgpparser.html.

[17] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley. Inferring
TCP connection characteristics through passive measurements. In Proc. of
IEEE INFOCOM, 2004.

[18] Sharad Jaiswal, Gianluca Iannaccone, Christophe Diot, Jim Kurose, and
Don Towsley. Measurement and classification of out-of-sequence packets in
a tier-1 IP backbone. IEEE/ACM Transaction on Networking, 2007.

[19] T. Kim and M.H. Ammar. Receiver buffer requirement for video streaming
over TCP. In Proc. of SPIE, 2006.

[20] Hongwei Kong. The Consistency Verification of Zebra BGP Data Collection.
Technical Report, Agilent Labs, 2003.

[21] Mohit Lad, Dan Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and Lixia
Zhang. PHAS: A Prefix Hijack Alert System. In USENIX Security Sympo-
sium, July 2006.

[22] Kun-chan Lan and John Heidemann. A measurement study of correlations
of Internet flow characteristics. Comput. Netw., 50(1):46–62, 2006.

[23] LBL. SCNMPlot.
http://www-didc.lbl.gov/SCNM/SCNMPlot.html.

[24] Sang Seok Lim and Kyu Ho Park. TPF: TCP Plugged File System for
Efficient Data Delivery over TCP. IEEE Transaction on Computers, 2007.

[25] Guohan Lu and Xing Li. On the correspondency between TCP acknowledg-
ment packet and data packet. In Proc. of Internet Measurement Conference
(IMC), 2003.

[26] Z.M. Mao, R. Bush, T.G. Griffin, and M. Roughan. BGP beacons. In Proc.
of Internet Measurement Conference (IMC), 2003.

93

http://irl.cs.ucla.edu/software/bgpparser.html
http://www-didc.lbl.gov/SCNM/SCNMPlot.html

[27] MRT routing information export format.
http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt.txt.

[28] RIPE NCC. Routing Information Service.
http://www.ris.ripe.net/.

[29] Ricardo Oliveira, Beichuan Zhang, Dan Pei, Rafit Izhak-Ratzin, and Lixia
Zhang. Quantifying path exploration in the Internet. In ACM SIGCOMM
Internet Measurement Conference (IMC), 2006.

[30] Shawn Ostermann. tcptrace.
http://www.tcptrace.org/.

[31] Kedar Poduri, Cengiz Alaettinoglu, and Van Jacobson. BSTBGP Scalable
Transport. http://www.nanog.org/meetings/nanog27/presentations/van.

pdf, 2003.

[32] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168.

[33] Feng Qian, Alexandre Gerber, Zhuoqing Morley Mao, Subhabrata Sen,
Oliver Spatscheck, and Walter Willinger. TCP revisited: a fresh look at
TCP in the wild. In Proc. of Internet Measurement Conference (IMC),
2009.

[34] Quagga Software Routing Suite. http://www.quagga.net/.

[35] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006.

[36] Jennifer Rexford, Jia Wang, Zhen Xiao, and Yin Zhang. BGP routing sta-
bility of popular destinations. In Proc. of ACM SIGCOMM Internet Mea-
surement Workshop (IMW), 2002.

[37] RIPE Routing Information Service.
http://www.ripe.net/projects/ris/.

[38] The RouteViews project.
http://www.routeviews.org/.

[39] The RouteViews project - Data format.
http://www.routeviews.org/data.html.

[40] The RouteViews project - BGP Data Archives.
http://www.routeviews.org/update.html.

94

http://www.ietf.org/internet-drafts/draft-ietf-grow-mrt.txt
http://www.ris.ripe.net/
http://www.tcptrace.org/
http://www.nanog.org/meetings/nanog27/presentations/van.pdf
http://www.nanog.org/meetings/nanog27/presentations/van.pdf
http://www.quagga.net/
http://www.ripe.net/projects/ris/
http://www.routeviews.org/
http://www.routeviews.org/data.html
http://www.routeviews.org/update.html

[41] Stan Salvador and Philip Chan. Determining the Number of Clus-
ters/Segments in Hierarchical Clustering/ Segmentation Algorithms. In
Proc. of IEEE International Conference on Tools with Artificial Intelligence,
2004.

[42] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and T. En-Najjary. Root
cause analysis for long-lived TCP connections. In Proc. of ACM CoNEXT,
2005.

[43] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos, and Christos Falout-
sos. Power-Laws and the AS-level Internet Topology. In ACM/IEEE Trans-
actions on Networking, August 2003.

[44] J. Touch, J. Heidemann, and K. Obraczka. Analysis of HTTP performance.
ISI Research Report ISI/RR-98-463, USC/ISI, 1998.

[45] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G. An-
dersen, Gregory R. Ganger, Garth A. Gibson, and Brian Mueller. Safe and
effective fine-grained TCP retransmissions for datacenter communication. In
Proc. of ACM SIGCOMM, 2009.

[46] B. Veal, K. Li, and D. Lowenthal. New methods for passive estimation of
TCP round-trip times. In Proc. of Passive and Active Network Measurement
(PAM), 2005.

[47] Lan Wang, M. Saranu, J.M. Gottlieb, and Dan Pei. Understanding BGP
Session Failures in a Large ISP. In Proc. of IEEE INFOCOM, 2007.

[48] Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush, Daniel Massey, Allison
Mankin, S. Felix Wu, and Lixia Zhang. Observation and analysis of BGP
behavior under stress. In Proc. of ACM SIGCOMM workshop on Internet
measurment (IMW), 2002.

[49] Li Xiao, Guanghui He, and Klara Nahrstedt. BGP session lifetime modeling
in congested networks. Computer Networks, 50(17):3315–3333, 2006.

[50] Li Xiao and K. Nahrstedt. Reliability models and evaluation of internal
BGP networks. In Proc. of IEEE INFOCOM, 2004.

[51] Beichuan Zhang, Vamsi Kambhampati, Mohit Lad, Daniel Massey, and Lixia
Zhang. Identifying BGP routing table transfers. In Proc. of ACM SIG-
COMM workshop on Mining network data (MineNet), 2005.

95

[52] Beichuan Zhang, Vamsi Kambhampati, Mohit Lad, Daniel Massey, and Lixia
Zhang. Identifying BGP routing table transfers. In Proc. of ACM SIG-
COMM workshop on Mining network data, 2005.

[53] Randy Zhang and Micah Bartell. BGP Design and Implementation, chapter
Tuning BGP Performance, pages 74–81. Cisco Press, 1999.

[54] Y. Zhang, Z.M. Mao, and J. Wang. Low-rate TCP-targeted dos attack
disrupts internet routing. In Proc. of Annual Network & Distributed System
Security Symposium, 2007.

[55] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the charac-
teristics and origins of Internet flow rates. In Proc. of ACM SIGCOMM,
2002.

96

	Introduction
	Background
	BGP Sessions
	BGP Transport Issues
	BGP Monitoring

	Longitudinal Study of BGP Session Resets and Delays
	Inferring Session Reset
	Data Sources
	MCT Algorithm

	Session Resets over Time
	Discussions on Session Resets
	Collector Failures
	BGP Timer Settings

	Summary

	Diagnose BGP transport problems
	Data Characterization
	Datasets
	Flow Level Characteristics

	Identify BGP Transport problems
	Gaps in Table Transfers
	Consecutive Retransmissions
	BGP Peer Group Blocking
	Summary

	Quantification Results
	Measuring the Occurrence
	Measuring the Slowness

	Discussion
	Suggested Improvements
	Lessons Learned

	BGP Transport Delay Analysis
	T-DAT: TCP Delay Analyzer
	Series-based Structure for Delay Analysis
	Input: TCP Packet Trace
	POI Series Generation
	Output: Contributing Delay Factors

	Analysis Results
	Identifying Major Delay Factors
	Revisiting the Transport Problems

	Discussion
	Source of Inaccuracy
	Prospective Usage

	Instrument the BGP monitoring
	BGP Microscope
	Deployment

	Related work
	BGP Monitoring Data Quality
	Understanding BGP and TCP Interaction
	TCP Behavior Analysis

	Conclusion
	References

