
Usable Security of Named Data
Networking

Yingdi Yu!

1

Traditional communication model of Internet

•  Speaking to a host!
•  end-to-end channel!

•  Communication security!
•  container-based authenticity: X.509, Certificate Authority!
•  channel-based confidentiality: IPSec, TLS/SSL!

2

New communication vs. Old security

•  Content Distribution Network (CDN)!
•  multiple containers to secure!
•  no end-to-end channel!

3

?

New communication vs. Old security

4

•  Delay Tolerant Network (DTN)!
•  temporary data container!
•  no instantaneous end-to-end channel!

?

New security model is desired!

5

•  No trustworthy container, no end-to-end encrypted
channel!

•  Data-centric security: let’s secure data directly!!
•  authenticate data rather than container!
•  encrypt data instead of channel !

Named Data Networking

6

•  Data-centric communication primitives!
•  retrieve data by name rather by container address!
•  Interest Packet: expressed by consumer, forwarded according

to name!
•  Data Packet: made by producer, forwarded along reverse path!

Consumer

Consumer

Producer

/ucla/cs/frontpage

/ucla/cs/frontpage/v1

Efficient & flexible data delivery

7

•  Data can be picked anywhere!
•  in-network caching!

•  Does not require instantaneous communication!
•  producer can go offline!
•  store pre-created data in third party storage!

Consumer

Consumer

Producer

Built-in data authenticity

•  Per packet signature!
•  privilege separation: different data signed by different keys!

•  Retrieve public key as data!
•  same authentication procedure!

•  Data carrying public key is a certificate!
•  more powerful!

8

Name: /ucla/cs/alice/thesis/v_3/s_8

Content: ...

SignatureInfo:
 KeyLocator: /ucla/cs/alice/KEY/2
 ValidityPeriod: [2015/5/2, 2016/5/2)
 ...

Signature Bits: ...

NDN Data Packet
Name: /ucla/cs/alice/KEY/2

Content:
 6d:32:8d:23:a9:b0:89:...

SignatureInfo:
 SignatureType: RSA-SHA256
 KeyLocator: /ucla/cs/KEY/7
 ValidityPeriod: [2015/1/1, 2017/1/1)
 ...

Signature Bits:
 cd:ca:70:72:7b:ff:a8:...

NDN Certificate X 509 Certificate

Subject Name

Subject Public Key Info

Certificate
Signature Algorithm

Issuer Name

Validity Period

Certificate Signature

But how to utilize those features?

•  Developers turn off security as the first step!
•  fake signature!
•  skip authentication!
•  wish no one is eavesdropping!

•  Can we make security easier for developers? !
•  automate data authentication!
•  automate data encryption!
•  minimize maintenance overhead!

9

Outline

10

Automating Data-Centric Authenticity

Authenticating Long-Lived Data

Automating Data-Centric Confidentiality

Outline

11

Automating Data-Centric Authenticity

Authenticating Long-Lived Data

Automating Data-Centric Confidentiality

Trust chain

•  Recursively retrieve key until reach a trust anchor
•  a pre-trusted key!

•  Constrained by trust derivation rules !
•  is data (or key) signed by a trusted producer (or issuer) ?!

•  Validate signature

12

Name: /ucla/cs/KEY/7

Content: ...

Signature:
 KeyLocator: /ucla/KEY/5

Data packet (key)

Trust
Anchor

/ucla/KEY/5

Trust Model

Name: /ucla/cs/yingdi/thesis/v_3/s_8

Content: ...

Signature:
 KeyLocator: /ucla/cs/yingdi/KEY/2

Data packet (target)

Name: /ucla/cs/yingdi/KEY/2

Content: ...

Signature:
 KeyLocator: /ucla/cs/KEY/7

Data packet (key)

Diversity of trust models

•  Trust model could be simple in some cases!

•  Application specific in general!
•  capability-based trust!
•  identity-based trust!
•  role-based trust!

13

/MyHome

/MyHome/temperature

/MyHome/album

/MyHome/msg

thermometer

family member

/MyHome/temperature/2016/5/2/15/30

/MyHome/album/2015/yosemite/2

/MyHome/msg/bob/13

/MyHome/temperature/KEY

/MyHome/member/bob/KEY

. (root)

.com .edu .org

google.com ucla.educnn.com

NDN insight

•  Name is a general expression!
•  can refer to identity, capability, role, …!

•  Any trust model can be expressed as a list of
relationship between data name and key name!

•  Data authentication can be done correctly and easily if
we have!
•  a name-based policy language to express trust model!
•  a library to perform authentication according to the policy!

14

Schematize the trust
Automate data authentication

Describe trust relationship in name

•  Relationship between data and key names!

•  Generalized as name pattern!

•  Regex-based syntax!

15

family member
signs

/My/home/msg/bob/13
/My/home/msg/alice/15

/My/home/member/bob/KEY
/My/home/member/alice/KEY

/My/home/member/bob/KEY

/My/home/msg

/My/home/msg/bob/13

home_prefix + “home” + “msg” + user + msg_id
home_prefix + “home” + “member” + user + “KEY”

signs

(<>*)<home><msg>([user_id])<>
\1<home><member>\2<KEY>

signs

/My/home/msg/frank/13

Trust schema

Rule ID! Data Name! Key Name!
msg (<>*)<home><msg>([user])<>! \1<home><member>\2<KEY>!

16

album (<>*)<home><album><><><>! \1<home><member>[user]<KEY>!

member (<>*)<home><member>([user])<KEY>! \1<home><KEY>!
temp (<>*)<home><temperature><><><><><>! \1<home><temperature><KEY>!

therm (<>*)<home><temperature><KEY>! \1<home><KEY>!

/My/Home

/My/home/temperature

/My/home/album

/My/home/msg
/My/home/msg/bob/13 family member

/My/home/member/bob/KEY

/My/home/album/2015/yosemite/2

thermometer
/My/home/temperature/KEY

/My/home/temperature/2016/5/2/15/30

root (<>*)<home><KEY>! /My/home/KEY 30:b4:82:9c:45:…!

/My/home/KEY

signs

signs

signs

signs

signs

Trust chain construction

Rule ID! Data Name! Key Name!
msg (<>*)<home><msg>([user])<>! \1<home><member>\2<KEY>!

17

album (<>*)<home><album><><><>! \1<home><member>[user]<KEY>!

member (<>*)<home><member>([user])<KEY>! \1<home><KEY>!
temp (<>*)<home><temperature><><><><><>! \1<home><temperature><KEY>!

therm (<>*)<home><temperature><KEY>! \1<home><KEY>!

root (<>*)<home><KEY>! /My/home/KEY 30:b4:82:9c:45:…!

Name: /My/home/album/2015/yosemite/2
Content: ...

Signature:
 KeyLocator: /My/home/member/bob/KEY

Data packet (target)
Name: /My/home/member/bob/KEY
Content: ...

Signature:
 KeyLocator: /My/home/member/bob/KEY

Data packet (key)

Name: /My/home/member/bob/KEY
Content: ...

Signature:
 KeyLocator: /My/home/KEY

Data packet (key)

Trust
Anchor

/My/home/KEY

Re-usability

Rule ID! Data Name! Key Name!
msg (<>*)<home><msg>([user])<>! \1<home><member>\2<KEY>!

18

album (<>*)<home><album><><><>! \1<home><member>[user]<KEY>!

member (<>*)<home><member>([user])<KEY>! \1<home><KEY>!
temp (<>*)<home><temperature><><><><><>! \1<home><temperature><KEY>!

therm (<>*)<home><temperature><KEY>! \1<home><KEY>!

family member

thermometer

root (<>*)<home><KEY>! /My/home/KEY 30:b4:82:9c:45:…!

/My/Home

/My/home/temperature

/My/home/album

/My/home/msg
/My/home/msg/bob/13

/My/home/member/bob/KEY

/My/home/album/2015/yosemite/2

/My/home/temperature/KEY

/My/home/temperature/2016/5/2/15/30

/My/home/KEY

different trust !
anchor for !

different home!

root (<>*)<home><KEY>! /Other/home/KEY 9c:45:30:b4:82:…!

/Other/home/msg/bob/13

/Other/home/album/2015/yosemite/2

/Other/home/temperature/KEY

/Other/home/member/bob/KEY

/Other/home/temperature/2016/5/2/15/30

/Other/Home

/Other/home/temperature

/Other/home/album

/Other/home/msg

/Other/home/KEY

Automated Signing

•  Signing Interpreter!
•  Determine signing key!
•  Request certificate if

needed!

19

Automated Certificate
Issuance System

<My><home><member>[user]<KEY>

/My/home/album/2014/zion/1

Find matching rule1

Derive key name for the article2

Lookup key in TPM3 Sign data 4

/My/home/member/bob/KEY

(<>*)<home><album><><><>
\1<home><member>[user]<KEY>

/My/home/album/2014/zion/1

album

member

Signing Interpreter

unsigned
data

signed
data

TPM

root
album

msg

member

temp therom

Implementation

•  Available in all the NDN platform libraries !
•  ndn-cxx: http://www.github.com/named-data/ndn-cxx!
•  NDN-CCL: http://named-data.net/codebase/platform/ndn-ccl/!

•  Powers data and interest authentication in:!
•  NFD: NDN Forwarding !
•  NLSR: NDN Link State Routing Protocol!
•  NDNS: NDN Domain Name System!
•  Repo-ng: NDN Data Repository!
•  ChronoChat: server-less multi-party chat application over NDN!

20

Summary

•  Trust schema is a general expression of NDN trust
model!
•  can be executed by any entity !

•  Trust schema is in text format
•  can be distributed as data packets!

•  A trust schema represents a security design pattern
•  regulate the behavior of applications!
•  a set of common trust schemas!

21

Outline

22

Automating Data-Centric Authenticity

Authenticating Long-Lived Data

Automating Data-Centric Confidentiality

Lifetime Mismatch

•  Data lifetime is usually longer than its signature!
•  crypto algorithm, key compromise, …!

•  Periodical re-signing is not the solution!
•  will not scale in long term!
•  data may outlive its producer!
•  not a problem in channel based security!

•  After fact validation!
•  verify signature validity at the time of production!

23

data is produced data is retrievedsignature expire

time

How to rollback the clock?

•  Timestamp service!
•  producer requests timestamp of data from the service!
•  provide existence proof of data at a given time point!

•  Design challenges!
•  how to tell the timestamp service is honest?!
•  scale with the number of timestamp records!

24

Consumer

Verifiable Timestamp
Service (VTS)

Producer

Verifiable timestamp

•  Timestamp service periodically
publishes a timestamp bundle!
•  containing data received during

the time period!
•  Producer requests including

its data in a bundle!
•  Existence verification!

•  check whether data is in the
corresponding bundle!

25

t0 t1 t2 t3 t4 t5

/time/t0 /time/t1 /time/t2 /time/t3 /time/t4

Producer Timestamp
Service

Could you timestamp my
data?

Sure. I will include it in
timestamp bundle 3.

timeslot 3

timeslot 4

Publish
timestamp
bundle 3

Retrieve timestamp
bundle 3

timeslot 98

...

Retrieve timestamp
bundle 98

Publish
timestamp
bundle 98

timeslot 50

...

Retrieve timestamp
bundle 50

Publish
timestamp
bundle 50

Producer Timestamp
Service

timeslot 3

Retrieve timestamp
bundle 3

Publish
timestamp
bundle 3

Consistent timestamp

•  Consistence verification!
•  check whether the timestamp

service modified the history!
•  A naïve solution: hash chain!

•  each timestamp bundle fixes all
the previous timestamp bundles!

•  consumers and producers can
verify consistency periodically!

26

t0 t1 t2 t3 t4 t5

/time/t0 /time/t1 /time/t2 /time/t3 /time/t4/time/t1

t0 t1 t2 t3 t4 t5

/time/t0
null

/time/t1
h0

/time/t2
h1

/time/t3
h2

/time/t4
h3

t0 t1 t2 t3 t4 t5

/time/t0
null

/time/t1
h0

/time/t2
h'1

/time/t3
h'2

/time/t4
h'3

is it consistent with
bundle 3?!

is it consistent with
bundle 50?!

Reduce verification overhead

•  Hash chain: O(m)!
•  m: number of timeslots!
•  10-min timeslots for 20 years： 106!

•  k-ary Merkle tree: !

•  root hash as the state!
•  existence verification:!

•  O(logkm)!
•  consistence verification:!

•  O(logkm)!
•  20 years timestamps !

•  4 hash computations for 32-ary
Merkle tree!

27

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4 n0,5 n0,6

n1,2 n1,3

n2,1

n3,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4 n0,5 n0,6

n1,2 n1,3

n2,1

n3,0

n0,0 n0,1 n0,2

n1,0 n1,1

n2,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4 n0,5 n0,6

n1,2 n1,3

n2,1

n3,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4 n0,5 n0,6

n1,2 n1,3

n2,1

n3,0

hi,n = H(hi-1,nk^i|hi-1,nk^i+1|…|hi-1,nk^i+k-1)

Verification proof as data

•  Proof is a pre-determined node set!
•  simply publishes each node as data!
•  consumer look up nodes necessary

for verification !

•  Update nodes after adding a new
timestamp bundle!
•  complete nodes are not changed!
•  at most one incomplete node at !

each layer!

28

n0,0 n0,1 n0,2

n1,0 n1,1

n2,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4

n1,2

n2,1

n3,0

n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4

n1,2

n2,1

n3,0

n0,5n0,0 n0,1 n0,2

n1,0

n0,3

n1,1

n2,0

n0,4 n0,5 n0,6

n1,2 n1,3

n2,1

n3,0

Name: /TimestampTree/ 3 / 3 / 0 /e8bc75..
Content:

Signature: ...

f189a0.. 3fa353..
3 children

279021..

Node data

•  Naming convention!
•  uniquely identify a node in a particular state!
!

•  Given a time point, the name !
of any node is determined!

!

29

3,0

2,0 2,1

1,64

2,2

2048, 2049

... ...

...

Index: 0, 1, , 32,

1,0

......

/[tree_prefix]/[completeness]/[layer]/[index]/[hash]

/TimestampTree/2050/1/64
/TimestampTree/complete/2/0
/TimestampTree/2050/2/2

Name: /TimestampTree/complete/ 2 / 1 /9900a..
Content:

Signature: ...

a2ed8b.. 7ac9dd.. 4bb231.....
32 children hashes

/TimestampTree/2050/3/0

Node retrieval

•  Nodes at higher layers are cached!
•  more frequently retrieved!
•  root node cached almost !

everywhere!

•  Complete nodes can be served by dummy storage!
•  balance traffic by routing prefix!

30

Timestamp
Service

Data storage

/TimestampTree/complete

/TimestampTree

... ...

Public auditing with Merkle tree

•  All the users verify the consistence of timestamp service!
•  occasionally retrieves the root!
•  the more users, the more secure!

•  single timestamp service for all the users!

•  Difficult to create double history!
•  NDN interest does not carry sender address!
•  Interest may not reach timestamp service (satisfied by cache)!

31

VTS

A

B

From whom?
/TimestampTree/2050/3/0

/TimestampTree/2050/3/0

Summary

•  After fact validation is an authentication model for non-
instantaneous communication!
•  decouple the lifetime of data and signature!
•  encourage the use of short-lived key!

•  Untrustworthy but verifiable timestamp service in NDN!
•  borrow the concept public auditing concept from Certificate

Transparency!
•  publishing Merkle-tree as data simplifies verification query

processing!
•  absence of source address and efficient data distribution

facilitates public auditing!

32

Outline

33

Automating Data-Centric Authenticity

Authenticating Long-Lived Data

Automating Data-Centric Confidentiality

Data confidentiality

•  Current practice: perimeter-based security!
•  data stays in trusted container!
•  pass data to authorized users through an end-to-end secure

channel!

•  Can we support data owner controlled confidentiality
without trusted container and secured end-to-end
channel?!

34

2. authenticate requester!
& apply access control!1. set up secure channel!

3. deliver data over secure channel!

Data
Producer

Data
Consumer

Data-centric confidentiality

•  Encrypt data at the time of production!
•  Distribute decryption keys to authorized consumers!
•  Design challenges!

•  How does a producer learn the authorized consumers?!
•  changing authorized consumers!
•  distributed production!

•  How to distribute decryption keys efficiently?!

35

Specify privilege using hierarchical name
Publish encryption instruction as named keys

Distributed production & Dynamic sharing

•  Shared album in SmartHome!
•  members produce photos at different sites in different years!
•  shared with relatives later !

•  no pre-knowledge about whom the photos will be shared with!

•  House surveillance video!
•  produced by cameras in different rooms!
•  allow security personel to watch the video when nobody at

home!
•  no pre-knowledge when family is out!

36

/My/home

/My/home/album

/My/home/monitor

/My/home/album/2014/yosemite

/My/home/album/2012/zion

/My/home/monitor/backyard

/My/home/monitor/frontdoor

/My/home/monitor/backyard/2015/5/2/9/0

/My/home/monitor/backyard/2015/5/2/9/1

Content key

•  Data is encrypted using a content key (C-KEY)!
•  symmetric key!
•  generated by producer!

•  Minimal access granularity!
•  encrypt data under the namespace!

•  Distributed to authorized consumers eventually!

37

/My/home

/My/home/album

/My/home/monitor

/My/home/album/2014/yosemite

/My/home/album/2012/zion

/My/home/monitor/backyard

/My/home/monitor/frontdoor

/My/home/monitor/backyard/2015/5/2/9/0

/My/home/monitor/backyard/2015/5/2/9/1

/My/home/album/2012/zion/1
/My/home/album/2012/zion/2

/My/home/album/2012/zion/3

/My/home/album/2012/zion/C-KEY

/[content_namespace]/C-KEY

/My/home/monitor/backyard/2015/5/2/9/C-KEY

Name: /My/home/album/2012/zion/1/FOR/
My/home/album/2012/zion/C-KEY

Content:

Signature Bits: 31:4d:a8:...

EncryptionInfo:
 Algorithm: AES
 Initial Vector: 8c:25:e7:...

Encrypted content: b4:75:6f:...

Encrypted data

•  A data packet with encrypted content!
•  encryption metadata!
•  encrypted content!

•  Encryption key name is encoded in data name!

•  different keys lead to different copies of encrypted data!
•  follow encryption key name, !

retrieve decryption key!

38

/[content_name]/FOR/[encrypt_key_name]

My/home/album/2012/zion/C-KEY/...
Interest:

Content key distribution

•  Distribute content key as encrypted data!
•  encrypted using authorized consumer’s public key!
•  producer can publish the encrypted content key later!
•  consumer can construct a decryption!

chain following the names!

39

Name: /My/home/album/2012/zion/C-KEY/
FOR/My/home/relative/diane/KEY

Content:

Signature Bits: 31:4d:a8:...

EncryptionInfo:
 Algorithm: AES
 Initial Vector: 8c:25:e7:...

Encrypted content:

/My/home/album/2012/zion/1
Interest:

/My/home/album/2012/zion/1/FOR/My/home/album/2012/zion/C-KEY
Data:

/My/home/album/2012/zion/C-KEY/FOR/My/home/relative/diane/KEY
Data:

/My/home/album/2012/zion/C-KEY/
Interest:
/My/home/album/2012/zion/C-KEY/FOR/My/home/relative/diane/KEY
Interest:

Access control policy distribution

•  Some producers require updated access control policy!
•  surveillance camera!

•  Access control policy!
•  a list of (namespace, authorized consumer key set)!

•  Namespace owner publishes access control policy!
•  producer retrieves the latest policy!

40

/My/home/monitor/backyard
Name: /My/home/READ/monitor/
backyard/2016050209/2016050218

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY
/HomeGuard/AliceFamily/KEY

/My/home/READ/monitor/backyard/2016050209/2016050218

policy data
prefix

access
namespace time interval

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/HomeGuard/AliceFamily/KEY

/My/home/READ/monitor/backyard/2016050209
/My/home/READ/monitor/backyard/2016050209/2016050218

/My/home/READ/monitor/backyard/2016050218
/My/home/READ/monitor/backyard/2016050218/2016050309

•  Policy retrieval overhead!
•  large data packet for popular

namespace!
•  redundant key retrieval!

•  Key encryption overhead!
•  a large number of content key!
•  an encrypted copy of content key

for each authorized consumer!
•  numbers of encrypted copies of

content keys: O(mn)!
•  m: number of authorized consumers!
•  n: number of content keys!

Name: /My/home/READ/monitor/
frontdoor/2016050209/2016050218

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY
/HomeGuard/AliceFamily/KEY
/Community/Security/KEY
/My/home/neighbor/karl/KEY
/My/home/neighbor/ellen/KEY

Scalability issues

41

Name: /My/home/READ/monitor/
backyard/2016050209/2016050218

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY
/HomeGuard/AliceFamily/KEY

Name: /My/home/READ/monitor/
backyard/2016050218/2016050309

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY

Name: /My/home/READ/monitor/
backyard/2016050309/2016050318

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY
/HomeGuard/AliceFamily/KEY

Does a producer have to know all the authorized consumers?

Namespace encryption key

•  Namespace owner publish namespace encryption
keys instead of namespace access policy!

•  Number of encrypted copies: O(m+n)!

42

Name: /My/home/READ/monitor/
backyard/2016050209/2016050218

Content:

Signature Bits: ...

/My/home/member/alice/KEY
/My/home/member/bob/KEY
/My/home/member/cathy/KEY
/HomeGuard/AliceFamily/KEY

namespace
key

Name: /My/home/READ/monitor/backyard/E-KEY/2016050209/2016050218

Content:
Signature Bits: ...

Name: /My/home/READ/monitor/backyard/D-KEY/
2016050209/2016050218/FOR/My/home/member/alice/KEY

Content:
Signature Bits: ...

Name: /My/home/READ/monitor/backyard/D-KEY/
2016050209/2016050218/FOR/My/home/member/bob/KEY

Content:
Signature Bits: ...

Name: /My/home/READ/monitor/backyard/D-KEY/
2016050209/2016050218/FOR/My/home/member/cathy/KEY

Content:
Signature Bits: ...

Name: /My/home/READ/monitor/backyard/D-KEY/
2016050209/2016050218/FOR/HomeGuard/AliceFamily/KEY

Content:
Signature Bits: ...

retrieved by producers

distributed to consumers

Automate granting access

•  Namespace owner can run a key publishing server to
automate data encryption!
•  validate consumer’s access request using trust schema!
•  generate namespace decryption key for requesting consumer!

43

Key Publish Server

ConsumerProducer

Content Encryption Key
Video Data

Namespace Encryption Key Namespace Decryption Key

Namespace Encryption Key Video Access Request

Namespace Decryption Key

Content Encryption Key

Namespace Encryption Key

Namespace Decryption Key

Namespace Decryption Key

Content Encryption Key
Video DataVideo Data

Content Encryption Key

Implementation

•  Available in all the NDN platform libraries !
•  ndn-group-encrypt: !

•  http://github.com/named-data/ndn-group-encrypt/!
•  NDN-CCL!

•  http://named-data.net/codebase/platform/ndn-ccl/!

•  Powers data access control in:!
•  NDNfit: health data sharing over NDN !
•  EBAMS: building management system over NDN!

44

Summary

•  Data-centric confidentiality is a decryption key
distribution problem!
•  control access by publishing encryption/decryption keys!

•  Key name specifies access at fine granularity
•  automate data encryption!

•  Indirected encryption enables scalable key distribution !

45

Conclusion

•  Data-centric security model enables flexible data
communication model!
•  reduced dependency on the data containers and channels!

•  Usability is critical to any security solution!
•  developers need high-level abstraction!
•  automation minimizes developer’s workload!

•  Expressive names enables usable security in NDN!
•  provide sufficient context and fine granularity for least privilege!
•  naming pattern can represent flexible trust models and

automate authentication & encryption!

46

Future work

•  Trust schema bootstrapping!

•  Robust timestamp service!
•  multiple instances!
•  failure recovery!

•  Enable name confidentiality !

47

List of publications

•  Journal and conference papers!
•  Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang, “Schematizing Trust in Named

Data Networking,” Proc. of ACM ICN, 2015.!
•  A. Afanasyev, Z. Zhu, Y. Yu, L. Wang, and L. Zhang, “The Story of ChronoShare, or How NDN

Brought Distributed Secure File Sharing Back,” in Proc. of IEEE MASS, 2015.!
•  Y. Yu, D. Wessels, M. Larson, and L. Zhang, “Check-R: A New Method of Measuring DNSSEC

Validating Resolvers,” in Proc. of IEEE TMA Workshop, 2013.!
•  Y. Yu, D. Wessels, M. Larson, and L. Zhang, “Authoritative Name Server Selection of DNS Caching

Resolvers,” in ACM Computer Communication Reviews, 2012.!
•  Technical reports!

•  W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT Networking via TCP/IP Architecture,”
Technical Report NDN-0038, 2016.!

•  V. Lehman, A. Hoque, Y. Yu, L. Wang, B. Zhang, and L. Zhang, “A Secure Link State Routing
Protocol for NDN”, Technical Report NDN-0037, 2016.!

•  W. Shang, Y. Yu, T. Liang, B. Zhang, and L. Zhang “NDN-ACE: Access Control for Constrained
Environments over Named Data Networking”, NDN, Technical Report NDN-0036, 2015!

•  Y. Yu, A. Afanasyev, and L. Zhang “Name-Based Access Control”, Technical Report NDN-0034,
2015!

•  Y. Yu “Public Key Management in Named Data Networking”, Technical Report NDN-0029, 2015!
•  Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang “An Endorsement-based Key Management System for

Decentralized NDN Chat Application”, Technical Report NDN- 0023, 2014!
•  Y. Yu, J. Cai, E. Osterweil, and L. Zhang “Measuring the Placement of DNS Servers in Top-Level-

Domain” Technical Report, May. 2011!

48

Special Thanks To Collaborators

49

Lixia Zhang

Alexander
Afanasyev

Van
Jacobson

Alex
Halderman

Beichuan
Zhang

Lan Wang David Clark kc claffy

Haitao Zhang Spyridon
Mastorakis

Qiuhan Ding Prashanth
Swami

Wentao
Shang

Zhenkai Zhu

End

50

NDN Overview

51

•  Native multicast!
•  Interest for the same data can be merged!

Consumer

Consumer

Producer

Data-centric security & NDN

•  Named Data Networking (NDN)!
•  data-centric communication primitives!
•  retrieve data by name rather by host!

•  NDN enables data-centric security!
•  per-packet signature!
•  hierarchical naming!

•  security context!
•  least privilege!

•  efficient key distribution!

52

SigLogger Overview
•  Security Context Log!

•  record security context over the time!
•  trust schema!

•  assure only one valid version of context
at any time point!

•  secure through publicity!

•  Revocation Log!
•  record revocation over the time!
•  promptly distribute revocation

information to consumers!

•  Verifiable Timestamp Service!
•  provide existence proof of data (and

keys)!
•  untrustworthy but auditable!

•  Producer distributes proof bundle with
data!
•  timestamp of data!
•  intermediate keys!
•  timestamp of keys!

53

subscribe revocation

data

Consumer
Data

Storage

Verifiable Timestamp
Service (VTS)

Security Context Log

Revocation Log

App
Authority

submit security context

monitor security context retrieve security context

Key owner
Certificate issuer

submit revocation record

request tim
estamp verify timestamp

Producer

auditingaud
iting

distribute data
& proof bundle

retrieve data
& proof bundle

Signing-based write access

•  Key name represents capability!
•  capable of producing data under a namespace!
•  capable of delegating the write access of a sub-namespace to others!
•  signing key hierarchy!

•  Express write access control policy as trust schema!
•  Distribute trust schema as data!

•  published by data owner retrieved by consumers!

54

/alice/KEY/2

/alice/health/data/KEY/3

/alice/health/data/activity/KEY/10
Activity sensor

Alice

Pulse sensor

/alice/health/data/activity/step/201605020900

signs

signs
signs

/alice/health/data/medical/pulse/KEY/10

/alice/health/data/medical/pulse/201605020900
signs

Alice

Data
Owner Interest: /alice/health/Schema

Name: /alice/health/Schema/v1
Content:

Signature:

trust anchor trust rule
...

trust anchor trust rule
...

Data
Consumer Bob

Append-only timestamp service

•  Chaining timestamp data by hash!
•  each timestamp data fixes all the previous timestamp bundle!

•  Consistence verification!
•  consumer remembers the hash of timestamp bundle at ti
•  consumer retrieve the timestamp bundle for tj (i < j)
•  check whether hj can be computed from hi

•  any modification before ti will be detected!

55

t0 t1 t2 t3 t4 t5

/time/t0 /time/t1 /time/t2 /time/t3 /time/t4

hk = H(TBk|hk-1)

t0 t1 t2 t3 t4 t5

/time/t0
null

/time/t1
h0

/time/t2
h1

/time/t3
h2

/time/t4
h3

t0 t1 t2 t3 t4 t5

/time/t0
null

/time/t1
h0

/time/t2
h'1

/time/t3
h'2

/time/t4
h'3

No way to know whether the timestamp
service is honest about [ti,tj)

Public auditing

•  Easy to catch misbehavior if !
•  the consistency of each timestamp bundle is checked by at

least one consumer!

•  Each consumer verifies consistence occasionally!
•  A lot of consumers collectively audit the single

timestamp service!

•  How to minimize verification overhead!

56

Use Case Example

•  Alice obtains a timestamp for her thesis!
•  also for keys if not timestampped!
•  distribute data with keys and timestamps!

•  Bob verifies the existence of keys using timestamp!
•  verifies data using keys!

57

time

/ucla/KEY

/ucla/cs/KEY

/ucla/cs/alice/KEY

/ucla/cs/alice/thesis

Validate
/ucla/cs/alice/thesis

/ucla/cs/alice/KEY expires
/ucla/cs/KEY expires

/ucla/KEYexpires

Verifiable Timestamp
Service (VTS)

