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Abstract of the Dissertation

Support Mobile and Distributed Applications

with Named Data Networking

by

Zhenkai Zhu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Lixia Zhang, Chair

The Internet is becoming increasingly mobile. As the the price of smartphones,

tablets, and other portable devices becoming more and more affordable, the mobile

access to the Internet is becoming the norm. Meanwhile, the current Internet ar-

chitecture is increasingly challenged by emerging communication patterns. While

IP was designed to solve the problem of carrying a point-to-point conversation

between two entities, in today’s dominant applications, such as video streaming,

file sharing, and social networking, users are more interested in obtaining desired

content rather than talking to a specific node. Such trends can be expected to

continue in the near future and call for a reexamination of the current Internet

architecture.

Named Data Networking (NDN) is a proposed future Internet architecture that

uses data names instead of host addresses for data delivery. The new architecture

incorporates principles that have made the IP protocol suite widely adopted and

globally scaled (e.g., the hourglass design and end-to-end principle), but changes

the fundamental layer of the architecture to one better suited to modern networks

and emerging communication patterns.

In this dissertation, we study how to support mobile and distributed applica-
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tions through Named Data Networking. Specifically, we focus on addressing two

complementary questions: one is how to provide flexible, secure, and yet simple

mobility support that serves the applications’ need in the mobile environment,

and the other is to how to design distributed applications that can fully exploit

the benefits brought by NDN’s architectural shift.

The first question is motivated by the fact that mobility support in the current

Internet still struggles to satisfy the applications’ need even though mobility has

become a fundamental characteristic of today’s Internet. We address this question

by providing a new perspective on mobility support in NDN that addresses the

weakness in the existing IP mobility solutions as well as utilizes the lessons learned

in IP mobility research. By aligning the mobility support with the data-centric

nature of the applications, the name-based data retrieval in NDN design, and the

broadcast nature of the wireless media, not only does the new approach address the

concerns in today’s IP mobility solutions, but it also integrates mobility support

using the same approach to cover all types of networks in the mobile environment,

including ad hoc and delay-tolerant networks.

The second problem is motivated by the observation that distributed appli-

cations, such as group text messaging, file sharing, multimedia conferencing, and

joint editing, have penetrated into our daily lives and drastically changed the com-

munication patterns, calling for a new Internet architecture and new application

design patterns that are freed from the constraints imposed by IP’s point-to-point

communication model. In this work, we take an application-driven approach to ex-

plore the new design patterns that can fully exploit the new opportunities brought

by NDN. We propose ChronoSync, an efficient and completely distributed dataset

state synchronization protocol to simplify the designs of distributed applications.

ChronoSync leverages the flexible naming in NDN to simplify the task of main-

taining up-to-date knowledge of a dataset, and exchanges the knowledge among

all parties in a compact crypto digest form. Differences in dataset usually can be
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inferred by comparing the digests, and can be efficiently propagated to all parties

using NDN’s built-in data multicast capability. We also propose a completely

distributed and data-centric security design to achieve the goals of providing data

provenance and access control to distribute applications in the absence of a cen-

tral controller. We validate the proposed new design patterns by developing a

distributed file sharing application, ChronoShare, that is based on ChronoSync

protocol and secured in a data-centric way. Together with the new mobility sup-

port approach, our work represents a step towards a new direction of providing

useful building blocks in supporting mobile and distributed applications.
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CHAPTER 1

Introduction

The Internet is increasingly mobile. More than 1 billion [Mil13] smartphones are

already in use and about 100 billion mobile applications have been downloaded

by May, 2013 [app, goob]. As the the price of smartphones, tablets, and other

portable devices becoming more and more affordable, one can confidently state

that the mobile access to the Internet is becoming the norm, rather than the

exception as we regarded it just a few years ago. Meanwhile, the current Inter-

net architecture is increasingly challenged by emerging communication patterns.

IP was designed to solve the problem of carrying a point-to-point conversation

between two entities. However, today the dominant applications that contribute

the most of Internet traffic are video streaming, file sharing, and social network-

ing [san13], in which users are more interested in obtaining desired content rather

than talking to a specific node. Such trends can be expected to continue in the

near future and call for a reexamination of the current Internet architecture in or-

der to address the challenges of supporting applications with new communication

patterns in an era of mobile.

Named Data Networking (NDN) [ZEB10] is a proposed future Internet archi-

tecture that uses data names instead of host addresses for data delivery. The new

architecture incorporates principles that have made the IP protocol suite widely

adopted and globally scaled (e.g., the hourglass design and end-to-end principle),

but changes the fundamental layer of the architecture to one better suited to

modern networks and emerging communication patterns.
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In this dissertation, we study how to support mobile and distributed applica-

tions through Named Data Networking. Specifically, we focus on addressing two

complementary questions: one is how to provide flexible, secure, and yet simple

mobility support that serves the applications’ need in the mobile environment,

and the other is how to design distributed applications that can fully exploit the

benefits brought by NDN’s architectural shift.

The first question is motivated by the fact that mobility support in current

Internet still struggles to satisfy the need of applications even though mobility

has become a fundamental characteristic of today’s Internet. Over the last two

decades, many efforts have been devoted to developing solutions for IP mobility

support, which addresses two basic questions: how to deliver packets to the mobile

node and how to maintain the transport and higher layer connections despite of

the mobile’s location changes. Yet, although a wide variety of protocols have been

proposed, some of which have become the Internet standards, there is still no wide

deployment of one or a set of IP mobility solutions. Concerns were raised about the

inflexible communication model, the weak security measures, the potential sub-

optimal data path, etc.. Furthermore, these solutions are based on the assumption

that a mobile node is always connected to the infrastructure, and its movement

only results in different connecting points. This is a rather limiting assumption,

as in reality mobility often leads to intermittent connectivity (e.g. vehicles on the

road) or opportunistic ad hoc connectivity among a set of mobile nodes, which

are currently handled by two separate branches of networking research, delay-

tolerant networking (DTN) and mobile ad hoc network (MANET), respectively.

However, such separation creates a great hurdle in developing applications that

can work under any type of networks, as each branch has produced their own

set of solutions that are largely orthogonal and incompatible with each other. As

a result, an application running on the mobile node may need to switch from a

TCP-based application protocol over 4G to probably a UDP-based, DTN protocol

2



when the connectivity condition changes. Such frustrating limitations highlight

the need of a new mobility support architecture that is able to support mobile

communications under varying connectivity conditions, which a mobile usually

experiences when roaming.

Can one provide flexible, secure, and yet simple mobility support that serves

the applications’ need in the mobile environment? Our answer is a resounding yes.

In this work, we first study the existing IP mobility support solutions in order

to understand the design space of mobility support and identify the limitations

of the current solutions. We then take a further step forward and assess the

overall picture of mobility support in NDN. By aligning the mobility support

with the data-centric nature of the applications, the name-based data retrieval in

NDN design, and the broadcast nature of the wireless media, we provide a new

perspective on mobility support that addresses the weakness in the existing IP

mobility solutions as well as utilizes the lessons learned in IP mobility research.

Not only can the NDN architecture address the concerns in today’s IP mobility

solutions, but it also can integrate mobility support using the same approach

to cover all types of networks in the mobile environment, including ad hoc and

delay-tolerant networks.

The second question is motivated by the observation that distributed appli-

cations, such as group text messaging, file sharing, multimedia conferencing, and

joint editing, have penetrated into our daily lives and drastically changed the com-

munication patterns, calling for a new Internet architecture and new application

design patterns that are freed from the constraints imposed by IP’s point-to-point

communication model. While such applications operate in terms of content with

the need to disseminate data among multiple parties, the current Internet ar-

chitecture forces them to communicate by discovering locations and establishing

point-to-point communication channels, resulting in unnecessary tussles and inef-

ficient data distribution. To cope with the constraints imposed by IP, the existing
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distributed applications either resort to a centralized paradigm or peer-to-peer

solutions. However, the former approach, while being straightforward, results in

single point of failure and centralized control of data; and the latter approach

requires building a sophisticated application overlay structure and implementing

application level data multicast, which is often undermined by the mis-matching

between the overlay network and the underlying network topology.

In this work, we take an application-driven approach to explore the new design

patterns that can fully exploit the new opportunities brought by NDN. When de-

veloping expeditionary distributed applications over NDN, we observed the ubiq-

uitous need of efficient and robust dataset synchronization support and also the

need to secure the applications in a distributed manner. To that end, we propose

ChronoSync, an efficient and completely distributed dataset state synchroniza-

tion protocol to simplify the designs of distributed applications. ChronoSync

leverages the flexible naming in NDN to simplify the task of maintaining the up-

to-date knowledge of a dataset, and exchanges the knowledge among all parties

in a compact crypto digest form. Differences in dataset usually can be inferred by

comparing the digests, and can be efficiently propagated to all parties using NDN’s

built-in data multicast capability. We also propose a completely distributed and

data-centric security design to achieve the goals of providing data provenance and

access control to distribute applications in the absence of a central controller.

We validate the proposed new design patterns by developing a distributed file

sharing application, ChronoShare, that is based on ChronoSync and secured in

a data-centric way. Together with the new mobility support approach, our work

represents a step towards a new direction of providing useful building blocks in

supporting mobile and distributed applications development.

The rest of the dissertation is organized as follows. In Chapter 2, we briefly

describe the mobility support problem in IP and also the concepts of NDN that

are essential to describe our work. We review the existing IP mobility support
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solutions in Chapter 3 to understand the solution space and to shed light on future

efforts. In Chapter 4, we describe our new perspective on mobility support with

NDN. In Chapter 5, we explore the new design patterns for distributed applica-

tions over NDN, presenting ChronoSync protocol and the data-centric security

approach. We conclude the dissertation in Chatper 6.
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CHAPTER 2

Background

In this chapter we provide the background for IP mobility problem and its solution

space. We also provide background on the Named Data Networking architecture,

which encompasses a conceptually simple yet transformational architectural shift

from today’s focus on where – addresses and hosts – to what – the content that

users really care about, and provides a foundation on which our work is based.

2.1 IP Mobility

The problem of IP mobility dated back to the birth of IP networks, when the

majority, if not all, of the hosts were stationary. Taking this fact for granted,

early protocol designs often rest on the assumption that a host can be uniquely

identified by its IP address, which is not subject to change over a relatively long

time. For instance, a TCP connection is identified by a well-known 5-tuple: source

IP address, source port, destination IP address, destination port, and the protocol

type. However, this assumption no longer holds once the hosts start to roam

around, prompting researchers and practitioners to proposes various designs to

remedy the problem.

2.1.1 IP mobility support problem

The basic question in IP mobility support is how to send data to a moving receiver.

For simplicity, henceforth we call the moving receiver “mobile node” (or a “mobile”
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for short), and the host that sends data to a mobile the “correspondent node”

(CN)1.

Due to IP’s host-based, point-to-point communication paradigm, the IP mo-

bility support solutions generally aim to solve essentially two problems: find the

new location of a mobile and keep the data communications uninterrupted despite

of the move. To achieve these goals, the mobility support solutions have to have

three essential components:

1. A stable IP address as an identifier for a mobile. This is to uphold the

assumption that a host can always be identified by its stable IP addresses,

based on which various protocols, including TCP, have been designed.

2. A locator, which is usually an IP address representing the mobile’s current

location. This is required by IP’s host-to-host delivery model.

3. A mapping between the locator and the identifier.

2.1.2 Mobile IP: an example of IP mobility solution

Mobile IP (MIP) [Per96] is probably the best known mobility support protocol.

The Internet Engineering Task Force (IETF) developed the first MIP standard in

1996, and subsequently defined different versions of the MIP standard for IPv4 and

IPv6 networks. Although these standards differ in details, the high-level design is

the same. Here we illustrate the basic design using Mobile IPv6 [JPA04].

Each mobile is assigned a home agent, from which it acquires its home address.

The home address (HoA) remains the same regardless of the mobile’s movement

and will be used in the place where stable IP address is expected. As the mobile

moves, it also obtains care-of-addresses (CoAs) from the access routers. The home

agent is notified whenever the CoA of the mobile changes, such that it always

1Note that CN could be a mobile too.
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Figure 2.1: Mobile IPv6. The double-stroked arrows represent the IPv6-in-IPv6

tunnel, and the dashed double-stroke arrow represent the tunnel before the mobile

moves.

maintains the current HoA to CoA mapping. A CN sends data to a mobile

using its HoA as the destination address. As a result, the packets are routed to

the mobile’s home agent, which in turn forwards the packets to the mobile by

encapsulating them with the mobile’s CoA as the destination. Vice versa, when

the mobile sends data to the CN, it tunnels the data to the home agent, which

decapsulate the packets and forward them to the CN. Figure 2.1a depicts the

Mobile IPv6 operations described above. For this part, the CN operates on the

normal IPv6, and does not need to understand Mobile IPv6.

Depending on the locations of the mobile, its home agent, and the CN, the

packets may be forwarded along a triangle path. Hence, Mobile IPv6 includes

measures, called “route optimization” (see Figure 2.1b), to allow the mobile to

directly communicate with a CN, if the CN also understands Mobile IPv6, after

the initial contact has been made with with the assistance of the home agent.

Whenever the mobile acquires a new CoA, in addition to notifying the home

agent, it also notify the CN, enabling CN to also maintain an up-to-date mapping

between the mobile’s HoA and CoA. As a result, the mobile and the CN can

directly communication by establishing an IPv6-in-IPv6 tunnel between the two,
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Figure 2.2: The thin waist of the network stack is changed from IP to named data

in NDN

which is updated whenever the mobile changes its CoA, bypassing the home agent.

2.2 Named Data Networking

With the challenge from the changing communication patterns, where users and

applications operate in term of content, today’s Internet’s requirements to com-

municate by discovering and specifying locations often create tussles. To bet-

ter accommodate the emerging patterns of communications, Jacobson, Zhang, et

al. have proposed Named Data Networking (NDN) architecture in recent work

[JST09, ZEB10] to evolve the Internet. The thin waist, as in today’s IP archi-

tecture, is the centerpiece of the NDN architecture, as show in Figure 2.2. This

change, though seeming simple in first glance, leads to significant difference be-

tween IP and NDN in their operations of data delivery. In this section, we briefly

cover the basic concepts in NDN upon which our work rests.

2.2.1 NDN packet types

There are two types of packets in NDN, namely Interest and Data, as shown in

Figure 2.3.

The Interest packet is sent when a consumer requests data. It carries a name,
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Figure 2.3: NDN packet types

which indicates the desired data, a selector field, which can specify preferences

and other restrictions if more than one Data packets can satisfy the Interest, and

a nonce.

A Data packet can be used to satisfy an Interest as long as the name carried

in the Interest is a prefix of that of the Data. Besides the name and the actual

content, a Data packet also includes “signed info”, which contains additional

information such as publisher’s key name, the timestamp, etc., and the signature

signed by the publisher.

2.2.2 Hierarchical names

Each piece of data in NDN is named, using a hierarchical structured name that

is unique in a specific scope. For example, this thesis may have the name /ucla.

edu/cs/zhenkai/thesis.pdf, where / indicates a boundary between name com-

ponents.

The hierarchy is useful in allowing applications to represent relations between

data pieces. Often, an application instance would be assigned a name prefix and

publishes its data under the assigned prefix. It also enables name-based routing

to scale, in that the routing announcements can be aggregated. Furthermore,

hierarchical names also facilitate the “scoping”, that is, some names may only

10



be meaningful in a specific network domain and are not meant to leak to other

domains. For instance, /ndn/broadcast prefix indicates that the Interest for

names under it should be broadcasted in the NDN testbed [Tes], but should not

be forwarded beyond the boundary of the testbed.

2.2.3 Data-centric security

Instead of securing the communication channels as of today’s Internet, NDN secure

the data itself. Each piece of data is cryptographically bound to its name, signed

by the publisher’s private key. The signature, along with a trust management

system that can verify the publisher’s public key, enables applications to determine

the provenance and integrity of the data, regardless of how (and from where) the

data is obtained.

Retaining the end-to-end approach, NDN offers publishers, consumers, and

applications great flexibility in choosing or customizing their trust models. As a

result, the data packets in NDN are meaningful independent of where they come

from, and can be cached inside the network to satisfy future requests.

2.2.4 Receiver-driven communications

Communications in NDN are driven by the receivers. To receive data, a consumer

has to explicitly solicit it by sending out an Interest packet with the desired data

name. A router remembers the interface from which the Interest comes from,

and forwards it towards the data producer according to “Forwarding Information

Base” (FIB), which is populated by some name-based routing protocol. Once a

Data packet with the desired name has been reached, it is propagated back to the

consumer following the reverse path taken by the Interest. Note that one Interest

can only retrieve one Data, and thus it maintains a strict flow balance.

The Interests that are yet to be satisfied are stored in the “Pending Interest

11
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Figure 2.4: NDN naturally supports multicast data delivery. Dashed arrows rep-

resent Interests for the same data and solid arrows represent the multicasted data

following the reverse paths of the Interests.

Table” (PIT) of the router. When multiple Interests for the same data are received

from downstreams, the router only forwards the first one towards the upstream.

Nevertheless, the set of interfaces from which Interests for the same name are

received is recorded in the PIT entry. When the Data arrives, the router looks up

the PIT, finds the matching entry, and forwards the Data to all interfaces listed.

Therefore, multicast data delivery is naturally supported by NDN, as illustrated

in Figure 2.4.

2.2.5 Intelligent data plane

In NDN, one fundamental change from IP, whose data plane is stateless, is the

PIT records maintained at each router. Each PIT entry indicates the expectation

of a Data packet, and is removed after a matching Data comes or timeout occurs.

This per-packet state information makes NDN’s data plane adaptive in handling

network failures, and effective in utilizing network resources.
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Aside from the multicast data delivery, the per-packet state allows routers to

monitor packet delivery performance of different interfaces and detect duplicate

Interest or Data packets, which ensures no loop would happen. Together, the data

plane feedback and loop-free forwarding enable the NDN routers to make decisions

on how to forward Interests through multiple interfaces, effectively support service

selection, load balancing, and fast failure detection as well as alternative paths

exploring. This capability, which we call “Forwarding Strategy”, is of immense

significance especially in providing better services for mobile devices with multiple

interfaces (WiFi, 4G, Ethernet, etc.).
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CHAPTER 3

A Study of IP Mobility Support

The Internet community has been working on IP mobility support research and

standardization since the early ’90s. Yet, new issues continue to arise and new

solutions continue to be developed to address them, making one wonder how much

more we have yet to discover about the problem space as well as the solution space.

As a result, we believe that a thorough study of the proposed solutions to IP

mobility support on the table can help us not only identify their commonalities

and differences but also clarify issues yet to be addressed and shed insight on the

efforts to support mobility in the evolving Internet architecture.

3.1 A Review of IP Mobility Solutions

In this section, we review existing IP mobility support protocols as listed in Ta-

ble 3.1. During the course we show that the myriad of different designs of IP

mobility support are merely different approaches to provide mapping between the

mobile’s identifier and its locator, which, as stated in Section 2.1.1, is the central

piece of all designs.

3.1.1 Forerunners in early 90s

At the beginning of 1990s, researchers started to realize the need to provide sup-

port for mobile devices to continuously access networks. Consequently, several

protocols that casted significant influence on later designs were proposed, among
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Protocol Year Protocol Year

Columbia 1991 TIMIP 2001

Virtual IP 1991 M-SCTP 2002

LSR 1993 HIP 2003

Mobile IP 1996 Connexion 2004

MSM-IP 1997 ILNPv6 2005

Cellular IP 1998 Global HAHA 2006

HMIP 1998 PMIP 2006

FMIP 1998 BTMM 2007

HAWAII 1999 WINMO 2008

NEMO 2000 LISP-Mobility 2009

E2E 2000

Table 3.1: IP mobility solutions studied, listed roughly in chronicle order

which the Columbia protocol [IDM91], Virtual IP [TYT91], and a protocol based

on IP Loose source routing (LSR) [BP93] are representative.

3.1.1.1 Columbia protocol

This protocol was designed to provide mobility support on a campus. A router

named Mobile Support Station (MSS) is set up in each wireless cell and serves as

the default access router for all mobile nodes in that cell. Each MSS also knows

how to reach other MSSs (e.g., all MSSs could be in one multicast group, or a list

of IP addresses of all MSSs could be statically configured).

A mobile node obtains an IP address from a special IP prefix, and the mobile

node uses this IP address regardless of the cell to which it belongs. Each MSS

keeps a tracking list of mobile nodes that are currently in its cell by periodically

broadcasting beacons. When receiving beacons, the mobile replies to the MSS
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Figure 3.1: An example communication scenario in Columbia protocol

with a message containing its IP address, and also the IP address of the previous

MSS if the beacon came from a new MSS. In the latter case, the new MSS is

responsible to notify the old MSS that a mobile has left its cell.

When a corresponding node (CN)1 sends a packet to a mobile node, the packet

goes to the MSS nearest to the CN, which proceeds to perform one of the following

two actions:

• deliver the packet directly if it is currently serving the mobile node;

• otherwise, broadcast a query to all other MSSs if there is no information

about the mobile node in the cache; the reply to the query is cached; it

then tunnels the packet to the MSS where the reply comes from, which then

decapsulates and delivers it to the mobile node.

An example communication scenario is depicted in Figure 3.1.

3.1.1.2 Virtual IP

This design has two basic ideas:

1See Section 2.1.1 for the definition of a correspondent node
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1. a packet carries both identifier and locator for a node;

2. the identifier is an IP address assigned from an IP prefix announced by the

home network of a mobile node, where the mapping between the identifier

and locator is kept.

The IP header is modified to allow packets sent by a mobile to carry two

IP addresses: a virtual IP address (identifier) and a regular IP address (locator).

Every time the mobile node changes its location, it notifies the home network with

its new IP address. A mobile’s virtual IP never changes, and is used in protocols

such as TCP to keep the sessions undisrupted.

Without prior knowledge of a mobile, the CN first uses the mobile’s virtual

IP address as the destination IP address, i.e. the locator is set to be the same as

the identifier. As a result, the packet goes to the mobile’s home network and the

home agent redirects the packet to mobile by replacing the locator field with the

mobile’s current address.

To alleviate the problem of triangle routing, the design lets CNs and routers

cache the identifier-locator mapping carried in the packets. The cache is purged

if timeout happens or the destination gateway router sends a control message

indicating that the cached locator is no longer valid for the mobile.

3.1.1.3 LSR-based protocol

In this protocol, each mobile has a designated router, called Mobile Router, that

manages its mobility. A Mobile Router assigns an IP address (used as an identifier)

for each mobile it manages and announces reachability to those IP addresses.

Another network entity in the LSR design is Mobile Access Station (MAS),

through which a mobile gets its connectivity to the Internet. The mobile node

reports the IP address of its current serving MAS (locator) to its Mobile Router.
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The CN uses the identifier to reach the mobile node in the first place. If

the CN and the mobile node are attached to the same MAS, the MAS simply

forwards packets between the two; otherwise, the packet from CN is routed to

the Mobile Router of the mobile. The Mobile Router looks up the mappings to

find the serving MAS of the mobile node, and inserts the LSR option into the

IP header of the packet with the IP address of the MAS on it. In this way, the

packet is redirected to the MAS which then delivers the packet to the mobile. To

this point, the locator of the mobile node is already included in the LSR option,

and the two parties can communicate directly by reversing the LSR option in the

incoming packet. Figure 3.2 illustrates the above process.

3.1.2 Mobile IP and its extensions

Since its debut as the IETF standard in 1996, Mobile IP, which is briefly intro-

duced in Section 2.1.2, has attracted a lot of attentions from both researchers

and industrial practitioners, and has been deployed in a number of commercial

systems. Due to its popularity and the status as the “de facto” IP mobility so-

lution, various extensions and enhancements have been proposed, some of them
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standardized, to improve the performance under different circumstances.

3.1.2.1 Extensions for better handoff performance

For instance, Hierarchical Mobile IP [SCE08] aims to scale Mobile IP and improve

the handoff performance by handling mobility in a local region locally. That is, the

mobile, if roams within a region served by a local Mobility Anchor Point (MAP),

only updates its location to MAP; only when moving to a new region served by

another MAP will the mobile node notify its home agent the IP address of the

new MAP. In this way, the handoff delay is reduced due to the physically close

distance to local MAP, and the bottleneck problem of the home agent is alleviated

to some extent by reduced frequency of updating from the mobile nodes.

Another attempt to reduce handoff delay and disruption was made by FMIPv6 [Koo09],

which mainly includes two measures.

1. It enables a mobile to detect a new network and formulate a prospective

CoA when it is still connected to the current network.

2. The mobile node, while trying to register the new CoA to home agent and

optionally to the CN, can request the previous router to redirect the packets

destined to it to the new CoA through IP tunneling, so that the disruption

during the handoff process is mitigated.

3.1.2.2 Extensions for network mobility

One family of extensions that draws much attention is Network Mobility (NEMO) [DWP05],

which aims to support mobility scenarios where a group of hosts move together

(e.g., passenger devices in cars, trains, or airplanes). Under such circumstance,

it would be rather inefficient to handle the mobility for each individual host sep-

arately. Furthermore, the burst of location update messages by the group could
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further deteriorate the situation.

Thus, NEMO propose that each moving network employs a mobile router that

is responsible for handling the mobility for all hosts on board. Conceptually

the mobile router works in a way similar to a normal mobile node in Mobile

IP. However, instead of having a single HoA, it obtains an IP block from the

home agent, and assigns IP addresses in the block to the hosts on board. While

traveling, all traffic to and from the mobile network flows through a bidirectional

tunnel between the mobile router and the home agent. As a result, only the mobile

router needs to update the home agent when the access network changes, and the

mobility is transparent to the group of hosts on board.

3.1.2.3 Extensions for better data path

The motivation for such extensions, represented by Global Home Agent to Home

Agent Protocol (G-HAHA) [WVM06], is to eliminate the triangle routing problem

of Mobile IP without forcing the CNs to support mobility. The route optimization

procedure included in Mobile IP standard requires the CNs to understand the

Mobile IP protocol and always maintain the mapping between the CoA and HoA

of a mobile, which is not always possible or desirable.

G-HAHA utilizes a group of home agents, which, distributed over a geographi-

cally and topologically large region, announce the same home prefix to the routing

system, effectively creating a large scale anycast group. Each mobile is assigned

an HoA from the anycast prefix, and can register with any of the home agents.

During the roaming, a mobile node M always register to the closest home agent

H from its access network, which accepts and request and informs all other home

agents about the mapping [M, H]. When a CN sends packets to M, the packets

are routed towards the closest home agent to CN as a result of anycast. This

home agent in turn lookup the serving home agent H for the mobile M in the
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mapping database, which is always kept synchronized in all home agents. It then

tunnels the packets to H, which finally decapsultes and delivers them to M. One

the reverse direction, the home agent near M forwards packets directly to CN af-

ter receiving them through IP tunnel from M. Figure 3.3 demonstrates the above

described operations.

With a reasonably large number of home agents deployed and distributed

widely, it is with high probability that there is a home agent sufficiently close to

the mobile or the CN, effectively eliminating the triangle routing.

3.1.2.4 Extensions for backward compatibility

Some mobile operator went further to take direct control over mobility support

by network and requires no mobility awareness in the mobile devices (and thus

the legacy devices can be supported). Proxy Mobile IP (PMIP) [GLD08] is one

of such proposals. PMIP introduces two new types of network entities, the local

mobility anchor (LMA) and the mobile access gateway (MAG). Each mobile node

is assigned an LMA within an operator’s network, which assigns the mobile a home

prefix and plays a role similar to that of the home agent in MIP. The MAG, as a
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result of operators desire, first acquires a mobile’s identity and verifies whether it

is authorized for access. In addition, it also monitors the mobile’s attaching and

detaching events, and updates the LMA accordingly. To hide a mobile’s roaming

from itself, a MAG also advertise the home prefix of each currently attached

mobile, so that a mobile consequently treats the MAG as its default router. This

enables PMIP to imitate an entire operator’s network as a single link for each

mobile, so that a mobile does not detect any change with respect to its layer 3

attachment as long as it roams within the operator’s network.

3.1.3 Host-route based protocols

Another approach adopted by a group of protocols [Val99, RPT02, GEN01] is to

set up a host route for each mobile within a network. This approach is network-

based, in that the mobility is handled by network entities, rather than the mobile

devices themselves.

3.1.3.1 Cellular IP

Cellular IP [Val99] is designed as a local mobility solution to work in conjunction

with Mobile IP. When entering a Cellular IP based network, a mobile reports to

its Home Agent the IP address of the network’s border router as its CoA, and

uses a locally assigned IP address when it roams in this network. To track the

locations of the mobiles, routers in the network monitor the packets originated

from each mobile and maintain a hop-by-hop reverse path from each router to

each mobile. Idle mobiles send dummy packets to the border router with a low

frequency to help routers maintain the reverse paths to reach them. To keep the

overhead low, only a subset of the routers maintain reverse paths for idle mobile

nodes. The routers use timeout to remove obsolete path states.

When the border router receives a packet destined to an idle mobile, whose
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precise location is not tracked, it sends out a query using scoped flooding. If a

receiving router knows how to reach the destination mobile, it forwards the query

to the corresponding interface; otherwise it forwards the query to all its interfaces

except the one the query came from. Once the mobile receives the query, it sends

a route-update message to the border router, setting up a precise reverse path

with short timeout value through all the routers along the data path, via which

the border router forwards packets to the mobile.

3.1.3.2 HAWAII

Similarly, Handoff-Aware Wireless Access Internet Infrastructure (HAWAII) [RPT02]

also aims to provide network-based local mobility support.

Different from Cellular IP, where the precise route to a mobile is set up on-

demand, HAWAII always maintains a precise route between the gateway router

and a mobile. When the mobile moves, HAWAII dynamically modifies the route

to the mobile by installing a host-based forwarding entry on the routers located

along the shortest path between the old and new base stations of the mobile.

Alternatively, a new sub-path between the mobile and the cross-over router can

be established to avoid the stretched route. Here, the cross-over router is the

router at the intersection of two paths, one between the gateway and the old base

station and the second between the old base station and the new base station.

In HAWAII, the mobile only periodically sends refresh messages to the base

station, and the base station along with other routers take care of the path main-

tenance.

3.1.3.3 TIMIP

Terminal Independent Mobile IP (TIMIP) [GEN01] integrates the design of Cel-

lular IP and HAWAII.
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On one hand, it refreshes the routing paths with dummy packets if the mobile

node is idle. On the other hand, handoff within a domain results in the changes of

routing tables in the routers. Besides, the IP layer is coupled with layer 2 handoff

mechanisms, and special nodes can work as Mobile IP proxies for legacy mobiles

that do not support Mobile IP. Thus, as long as the mobile roams within the

domain, the legacy node has the same degree of mobility support as a Mobile-IP-

capable node.

3.1.4 Global routing based protocols

Supporting mobility through dynamic routing is conceptually simple: one can

announce the location of a mobile throughout the entire Internet so that all routers

know how to reach the mobile. However, announcing routes for individual mobiles

is practically impossible, and thus the work in this category focus on network

mobility.

3.1.4.1 Connexion

Boeing deployed the Connexion service [And06], based on BGP routing, during

2004–2006 that enabled travelers on board of a plane to access the Internet. The

design assigns a permanent /24 IP address prefix to each mobile network (in this

case an airplane) and uses BGP to propagate the reachability to these prefixes.

When an airplane with a prefix P moves from an access router Ra on the ground

to another access router Rb, Ra withdraws the prefix P and Rb announces P ,

thus the attachment point changes of each airplane are propagated to the rest of

the Internet. Consequently this design raises routing scalability concerns: if the

number of mobile networks becomes large, the amount of rapid BGP updates will

also increase proportionally which could lead to severe router overload.
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3.1.4.2 WINMO

Wide-Area IP Network Mobility (WINMO) [HMY08] aims to address the routing

scalability concern of Connexion. Like Connexion, it also assigns each mobile

network a stable prefix. However it reduces the total number of updates originated

from mobile networks by orders of magnitude through two new approaches. First,

WINMO uses various heuristics to limit the propagation scope of routing updates

caused by mobile movements. As a result, not all routers may know all mobiles’

precise locations. Second, WINMO adopts the basic idea in MIP by assigning each

mobile network a “home” in the following way. WINMO assigns mobile network

prefixes out of a small set of well-known Mobile Prefixes. These Mobile Prefixes

are announced by a small set of Aggregation Routers which also keep track of all

mobile networks current locations. Thus these Aggregation Routers play a role

similar to Home Agents in MIP and can be used as the last resort to reach mobile

networks.

3.1.5 End-to-end solutions

The protocols described so far share a common assumption that the CN is not

required to be aware of the mobile’s movement2. A group of solutions have also

been developed that expose the mobile’s movement to the CN, thus providing mo-

bility support without requiring either intermediates (e.g., home agents in Mobile

IP) to forward packets or network routing to track the mobile’s locations. We call

this class of solutions end-to-end solutions.

Typically, they use the existing DNS infrastructure to store the mapping be-

tween a mobile’s identifier and its current location. A CN can query the DNS to

obtain the location of a mobile at the beginning of the data exchanges, and the

mobile is responsible for updating both the DNS and the CN afterwards during

2Mobile IP’s route optimization, for example, allows CN to track the mobile, but it is not
mandatory
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the communications. If the CN and the mobile move simultaneously (and hence

the former misses the latter’s update message), it can always resort back to query

DNS again to find the mobile’s latest location.

3.1.5.1 E2E and M-SCTP

E2E (End-to-End) communication [SB00] gets its name from its end-to-end ar-

chitecture and is the first proposal that utilizes existing DNS service to track a

mobile node’s current location. The stable identifier for a mobile is the domain

name of the mobile. The mobile uses Dynamic DNS [RTB97] to update its cur-

rent IP address in DNS servers. To keep the ongoing TCP connection unaffected

by mobility, a TCP Migrate option is introduced to allow both ends to replace

the IP addresses and ports in TCP 5-tuple on the fly. Thus, the CN can query

DNS to obtain the current Locator of the mobile, and after the TCP connection is

established, the mobile will be responsible for updating its Locator for this session.

Inspired by E2E, Mobile Stream Control Transmission Protocol (M-SCTP) [XKW02]

was proposed in 2002. Similarly, it uses Dynamic DNS to track the mobile nodes

and allows both ends to add/delete IP addresses used in Stream Control Trans-

mission Protocol (SCTP) [SXM00] associations during the move.

3.1.5.2 Host Identity protocol

The Host Identity protocol (HIP) [MNJ08] assigns each host an identifier made

of cryptographic keys and adds a new Host Identity layer between the transport

and network layers. Host Identities, which are essentially public keys, are used to

identify the mobile nodes, and IP addresses are used only for routing purposes.

In order to reuse the existing code, a Host Identity Tag (HIT), which is a 128-

bit hash value of the Host Identity, is used in transport and other upper-layer

protocols.
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HIP can use DNS as the rendezvous point that holds the mappings between

HITs and IP addresses. However, HIP by default uses its own static infrastructure

Rendezvous Servers (RVS) in expectation of better rendezvous service. Each

mobile node has a designated RVS, which tracks the current location of the mobile

node. When a CN wants to communicate with mobile node, it queries DNS with a

mobile node’s HIT to obtain the IP address of the mobile node’s RVS and sends out

the first packet. After receiving this first packet, RVS relays it to the mobile node.

The mobile node and correspondent node can henceforth start communication on

the direct path. If the mobile node moves to a new address, it notifies the CN by

sending HIP UPDATE with LOCATOR parameter indicating its new IP address.

Meanwhile, it also updates the mapping in RVS.

3.1.5.3 ILNPv6

ILNPv6 stands for “Identifier-Locator Network Protocol for IPv6” [ABH07]. Sim-

ilar to HIP, it also attempts to clearly separate identifier from locator.

The ILNPv6 packet header was deliberately made similar to the IPv6 header.

Essentially, it breaks an IPv6 address into two components: high-order 64 bits as

a locator and low-order 64 bits as an identifier. The identifier identifies a host,

instead of an interface, and is used in upper-layer protocols (e.g., TCP, FTP);

on the other hand, the locator changes with the movement of the mobile node,

and a set of locators can be associated with a single identifier. Several new DNS

resource records (RRs) are required, among which I (identifier record) and L (lo-

cator record) are most important. As in current Internet, the CN will query the

DNS about the mobile’s domain name to determine where to send the packet.

During the movement, the mobile node uses secure Dynamic DNS update to en-

sure that the locator values stored in DNS are up to date. It also sends locator

update messages to the CNs that are currently communicating with it. As an

optimization, ILNPv6 supports soft-handoff, which allows the use of multiple lo-
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cators simultaneously to achieve smooth transition. ILNPv6 also supports mobile

networks.

3.1.5.4 LISP-Mobility

LISP-Mobility [FLM11] is a relatively new design. Its designers hope to utilize

functions and services provided by Locator/ID Separation Protocol (LISP) [FFM12],

which is designed for Internet routing scalability, to support mobility as well.

Conceptually, LISP-Mobility may seem similar to some protocols we have men-

tioned so far, such as ILNPv6 and Mobile IP. Lightweight Ingress Tunnel Router

and Egress Tunnel Router functions are implemented on each mobile node, and

all the packets to and from the mobile node are processed by the two router func-

tions (so the mobile node looks like a LISP site). Each mobile node is assigned a

static Endpoint ID, as well as a preconfigured Map-Server. When a mobile node

roams into a network and obtains a new Routing Locator, it updates its Routing

Locator set in the Map-Server, and it also clears the cached Routing Locator in

the Ingress Tunnel Routers or Proxy Tunnel Routers of the CNs. Thus, the CN

can always learn the up-to-date location of the mobile node by the resolution of

the mobile node’s Endpoint ID, either issued by itself or issued after receiving the

notification from the mobile node about the staled cache. The data would always

travel through the shortest path.

3.1.5.5 BTMM

Back to My Mac (BTMM) [CZW11] is an engineering approach to mobility sup-

port and has been deployed since 2007 with Mac OS Leopard release. Each user

gets a MobileMe account (which includes BTMM service), and Apple, Inc. pro-

vides DNS service for all BTMM users. The reachability information of the user’s

machine is published in DNS.
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Figure 3.4: An overall picture of BTMM

A mobile uses secure DNS update to dynamically refresh its current location.

Each host generates an IPv6 Unique Local Address [HH05] at boot time, which is

stored in the DNS database as its topologically independent identifier. The host’s

current IPv4 address (which is the IPv4 address of the NAT box if the host is

behind a NAT) is stored in a SRV resource record [GVE00] together with a trans-

port port number needed for NAT traversal. Every node establishes a long-lived

query session with the DNS server so that the DNS server can immediately notify

each node when the answer to its query has changed. A host uses its identifier

(IPv6 address) in transport protocols and IPsec security associations [KS05] and

applications and uses UDP/IPv4 encapsulation to deliver data packets using in-

formation learned from the SRV resource record. Note that the locator here is the

IPv4 address plus the transport port number and that the IPv6 address is only

for identification purposes. In fact, it could be any form of identifier (e.g., domain

name); BTMM chose to use IPv6 addresses so that its implementation can reuse

existing code. The overall design of BTMM is depicted in Figure 3.4.

What made BTMM unique is that it achieves the functions such as host mo-

bility support, NAT traversal, secure end-to-end data delivery mainly through a

well engineered combination of existing protocols and software tools, instead of
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developing new protocols.

3.1.6 IP multicast based mobility

Another interesting category of mobility support approaches is IP multicast based

solutions.

MSM-IP, which stands for “Mobility Support using Multicast in IP” [MB97],

aims to leverage IP multicast routing for mobility support. In IP multicast, a host

can join a group regardless of to which network it attaches and receive packets sent

to the group after its join. Thus mobility is naturally supported in the domains

where IP multicast is deployed. Note that MSM-IP does not address the issue

of feasibility of supporting mobility through IP multicast, but rather it simply

shows the possibility of using IP multicast to provide mobility support, once/if

IP multicast is universally deployed.

MSM-IP assigns each mobile node a unique multicast IP address as the iden-

tifier. When the mobile node moves into a new network, it initiates a join to its

own address, which makes the multicast router in that subnet join the multicast

distribution tree. Whoever wants to communicate with the mobile node can just

send the data to the mobile’s multicast IP address, and the multicast routing will

take care of the rest.

Note that, due to the nature of multicast routing, the mobile node can have

the new multicast router join the group to cache packets in advance before it

detaches the old one, resulting in smoother handoff.

3.2 A Multi-factor Design Space

After a comprehensive overview of the mobility solutions that have been proposed

or standardized so far, in this section we contrast and compare different design

30



choices.

3.2.1 Routing-based versus mapping-based

All existing mobility support designs can be broadly classified into two basic

approaches.

The first one is to support mobility through dynamic routing. In such designs,

a mobile keeps its IP address regardless of its location changes; thus, the IP

address can be used both to identify the mobile and to deliver packets to it. As

a result, these designs do not need an explicit mapping function. Rather, the

routing system must continuously keep track of a mobile’s movements and reflect

its current position in the network on the routing table so that at any given

moment packets carrying the (stable) receiver’s IP address can be delivered to the

right place.

It is also worthwhile to identify two sub-classes in routing-based approaches.

One is broadcast based, and the other is path based. In the former case, either

the mobile’s location information is actively broadcasted to the whole network

or a proactive broadcast query is needed to obtain the location information of a

mobile (e.g., Columbia and Connexion); in the latter case, on the other hand, a

host-based path is maintained by the routing system instead (e.g., Cellular IP,

HAWAII, and TIMIP).

The second approach to mobility support is to provide a mapping between

a mobile’s stable Identifier and its dynamically changing IP address. Instead of

notifying all the routers within a domain on every movement, a mobile only needs

to update a single binding location about its location changes. In this approach,

if one level of indirection at IP layer is used, as in the case of Mobile IP, it has a

potential side effect of introducing triangle routing; otherwise, if the two end nodes

are aware of each other’s movement, it means that both ends have to support the
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same mobility protocol.

Yet, there is the third case in which the protocols combine the above ap-

proaches in the hope of keeping the pros and eliminating some cons of the two.

WINMO is a typical protocol in this case.

3.2.2 Operator-controlled versus user-controlled

By and large the global mobility support today is provided by cellular networks.

Different from Mobile IP, cellular networks use a service model that bundles to-

gether mobility support with device control and network access control. The

success of cellular market speaks loudly that the current cellular service model

is viable and is likely to continue into foreseeable future. Consequently there

have been many efforts in IETF in recent years to develop mobility support stan-

dards that follow the cellular networks model, and PMIP represents one of such

outcomes.

One main reason for this approach is perhaps backward compatibility. By not

requiring the participation of mobiles in the control-signaling process, it avoids any

changes to the mobile nodes so that the mobile nodes can stay simple and all the

legacy nodes can obtain the same level of mobility services as the latest mobile

devices. According to the claim of cellular vendors and operators, transparent

mobility support is a key aspect for success as they learn from their deployment

experience.

On the other hand, most of the mobility support protocols focus on mobility

support only, assuming mobiles already obtained network access. Mobile nodes

typically update their locations themselves to the rendezvous points chosen by

the users, and, of course, only the nodes implementing one of these solutions can

benefit from mobility support. However, this class of protocols does offer users

and mobile devices more flexibility and freedom, e.g., they can choose whatever
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mobility services are available as long as their software supports that protocol,

and they can also tune the parameters to get the services that are most suitable

to them.

3.2.3 Local versus global

Discussions on mobility support often involve the concepts of local mobility sup-

port and global mobility support. Before we proceed to discuss the roles of local

and global mobility support, let us first clarify the definitions of local versus global

mobility.

Generally speaking, mobility support should be global in scope, i.e., a mobility

protocol should enable communications with a mobile independent from the geo-

graphic or topological distances between a correspondent and the mobile. Mobile

IP and HIP are examples of such protocols.

A local mobility management protocol, by definition, is to work within a local

domain. However different communities have different interpretations regarding

what defines a local domain.

One definition of local domain is a relatively small network or a geographic

area (e.g. a university campus or campus network). Under such assumption, a

local mobility support protocol is designed to work together with global mobility

management and thus focuses more on performance issues, such as handoff delay,

handoff loss, local data path, etc. Since it is typically used on a small scale with

a limited number of mobile nodes, sometimes the designers can use some fine-

tuned mechanisms that are not scaled with a large network (such as host route)

to improvement performance. As a side effect of local mobility management, the

number of location updates sent by mobile nodes to their global rendezvous points

is substantially reduced. Thus, the existence of local mobility management also

contributes to the scalability of global mobility management.
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Mobile operators, on the other hand, define local versus global mobility as

whether a mobile moves within a provider’s network or across the boundary to a

different provider’s network, respectively. A mobile may roam across continental

US and is considered as local mobility if it is still within the same operator’s

network, or it may be considered to have global mobility even though it may only

switched to another providers network without physical movement. This, however,

makes the designs no longer complementary to global mobility support. Rather

than aiming at improve the user experience and scale the the global mobility

support, it mainly serves to control the mobility support of the devices within a

provider’s network.

3.2.4 Mobility awareness

Among the various design choices, a critical one is how many entities are assumed

to be mobility-aware. Stated in another way, the mobility is hidden from which

parties. There are four parties that may be involved during a conversation with

a mobile: the mobile itself, CN, the network, and home agent or its equivalent

(additional component to the existing IP network that holds the mapping).

As routing-based approaches generally expose the movements of the mobiles

to all routers and requires no participation from either the mobile or the CN, we

mainly focus our discussion on mapping-based approaches here.

The first design choice is to hide the mobility from the CN, based on the

assumption that the CN may be the legacy node that does not support mobility.

In this approach, the IP address which is used as the mobile’s identifier points to

the home agent or its equivalent that keeps track of the mobile’s current location.

If a CN wants to send packets to a mobile node, it sets in the destination field of IP

header an IP address which is a mobile’s identifier. The packets will be delivered

to the location where the mapping information of the mobile is kept, and later
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they will be forwarded to the mobile’s current location via either encapsulation

or destination address translation. Mobile IP and most of its extensions, as well

as several other protocols fall into this design.

The second design choice is to hide the mobility from the mobile and CN,

which is based on a more conservative assumption that both the mobile and the

CN do not support mobility. Protocols like PMIP and TIMIP adopt this design.

The protocol operations in this design resemble those in the first category, but

significant difference is that, here the mobility related signaling (e.g. update

locator to the home agent) is handled by the entities in the network, rather than

the mobile itself. Hence the mobile blissfully assumes that it is always in the same

subnet.

The third one is to let both mobile and the CN to be mobility-aware. As a

result, the network is not aware of the mobility and no additional component is

required. As increasing number of mobile devices are connected to Internet (why

hide mobility to them), this design choice seems to be more and more appealing.

One common approach taken by this design is to use DNS to keep track of mobiles’

current locations. Mobiles use dynamic DNS updates to keep their DNS servers

updated with their current locations. This approach re-utilizes the DNS infras-

tructure, which is ubiquitous and quite reliable, and makes the mobility support

protocol simple and easy to deploy. Protocols like E2E, ILNPv6 and BTMM fail

into this design. Although HIP adds special purpose rendezvous servers to the

network to replace the role of DNS, both mobile and CN are still mobility-aware,

and hence it is also classified in this category.

3.3 Limitations of IP mobility support

In this section we examine several limitations of IP mobility support.

Although the existing IP mobility solutions differ in many ways, they nonethe-
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less share several common limitations as we list below.

First, as IP is designed for point-to-point data delivery, so far the IP mobility

solutions also focus only on maintaining point-to-point communication sessions.

However, in the face of the increasing popularity of other communication patterns,

such as information-centric and many-to-many group communications, the model

inherited from IP greatly limits the capability of applications built on top of IP

mobility solutions.

Second, security has always been a big challenge. Like the prevailing practice

of securing the communication channels in the current Internet, the security in

IP mobility solutions is tied to IP addresses. This means that the security as-

sociations must be updated or reestablished when one or both ends move, which

is inefficient and fragile in mobility scenarios where devices tend to move around

frequently. Also, once the other end is authenticated and the communication

channel is established, whatever data comes from the channel is regarded as from

the node that one intends to communicate with. However, this is vulnerable in

practice as protocol designs tends to treat security as the “add-on” features and

often use very basic measures that are easily broken [Ram06]. For example, Mo-

bile IPv6 [JPA04] uses a “return routability procedure” to protect the location

update from the mobile to the correspondent node, which simply checks whether

the sender of the location update message is in fact reachable using the claimed

new care-of address and the home address.

Last but not least, a basic assumption of IP mobility solutions is that the mo-

bile always has connectivity to the infrastructure. However, in reality the mobility

can easily lead to intermittent connectivity or ad hoc connectivity among a set

of mobiles. Such problems are currently handled by DTN and MANET respec-

tively, which creates a great hurdle for applications to work under any connectivity

conditions.
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CHAPTER 4

A New Perspective on Mobility Support

The reason behind the various shortcoming of IP mobility support is that pre-

vious attempts typically incorporated TCP/IP’s host-centric communication and

addressing model, which does not fit the dynamic mobile networking environment

and fails to accommodate emerging communication patterns.

Meisel et al. [MPZ10] were the first to argue that MANET can be made

more effective and efficient using named-data approach. [MPZ10] observed that

MANET solutions typically adopted basic models from wired Internet protocol

stack which was designed for wire-connected network topology, and thus are un-

suited for the highly dynamic, ad hoc MANET environment. The authors then

demonstrated that using named-data approach for data delivery in MANET can

better utilize the broadcast nature of wireless channels and can effectively and ef-

ficiently handle both physical mobility of nodes and logical mobility of application

data.

In this chapter, we take a further step forward and assess the overall picture

of mobility support in NDN.

4.1 Mobility Support in NDN

NDN is particularly beneficial in providing mobility support. Mobile nodes can

communicate based on what data they need, instead of trying to maintain a

specific path to reach a specific node. In this section, we show that NDN, with its
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ability to name individual content packet, to securely bind name to the content,

to keep per-packet state in forwarders, and to have flexible Interest forwarding

strategy at each node, can greatly simplify the mobility support design in various

aspects.

4.1.1 Location independent data security

NDN secures the data itself, a design choice that decouples trust in data from

the trust in hosts (or locations). This simple yet transformational shift is of

tremendous significance in mobility support. The difficult problem of securing the

ever-changing communication channels and all the boxes along the way no longer

exists. Instead, one only needs to concern about the security of the data itself.

The task of providing provenance is achieved by the per-packet data signatures

and the data secrecy, if needed, is accomplished by encryption, leaving open only

the task of trust management between data producers and consumers, but not

any channels or boxes in the middle of the dynamic data delivery paths.

4.1.2 Enhance delivery with network caching

Because each data packet in an NDN network is named and signed, it can be

cached in any node and used to satisfy later requests. Generally speaking, in an

ad hoc environment, the distinction between routers and end hosts is blurred,

as every node may need to help forward packet for other nodes. NDN’s built-in

caching support can bring great opportunities to enhance data delivery in dynamic

ad hoc environment through opportunistic caching by any nodes.

First, when the network paths are dynamic and unpredictable traditional

caching approaches, which cache the whole application-level data objects rather

than segments of objects, work poorly or not at all in mobile ad hoc environments.

This is due to the fact that each cached objects has to be retrieved in its entirety
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from the same caching node. However, given that application-level data objects,

e.g., images, videos, tend to be large in size, it is often the case that the data

paths changes mid of fetching a big object, resulting in wasted effort. In NDN,

since each data packet is meaningful independent of where it comes from or where

it may be forwarded to, different chunks of the same large application data object

can be opportunistically stored at multiple intermediate nodes to speed up future

requests. Content or infrastructure providers can also set up designated long-term

caching nodes for popular content, and it is entirely likely that some of the mobile

user’s requests get satisfied by caches on one node and others by a different node

as a result of movement.

Furthermore, NDN caching also improves the performance in noisy wireless

environment and smoothens the mobile’s handoff. For example, as shown in Fig-

ure 4.1, the packets that are lost in last wireless hop are cached in the access

point and can immediately satisfy the retransmitted Interests from the mobile,

without the need to go all the way to the content provider again. Also, smooth

handoff is achieved without special optimization techniques, which are required

in IP mobility solutions. For instance in IP, a mobile needs to ask the old access

router to tunnel packets to the new access router during the handoff (see Fig-

ure 4.2a). This usually imposes additional requirements on connectivity (e.g., a

mobile may need to connect to both old and new access routers at the same time),

requires both routers and the mobile to support special protocols, and potentially

results in sub-optimal data paths. On the contrary, as shown in Figure 4.2b, the

NDN data packets that are not delivered to the mobile during the handoff are

opportunistically cached in the network and can be retrieved when the mobile

retransmits the previous Interests from the new access router.
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4.1.3 Integrating DTN and MANET into mobility support

NDN automatically embraces ad hoc and delay-tolerant data delivery, rather than

handling them by separate sets of solutions as in today’s Internet. It achieves so

as follows.

First, NDN names individual data pieces and routes Interests based on application-

defined names rather than network driven conventions. This enables mobile nodes

to communicate based on what data they need, instead of computing a path to

reach a specific node. Also, data can be cached and carried around by mobile

nodes. Second, NDN fully utilizes the broadcast nature of wireless communica-

tions. The Interests can be broadcasted and whoever has the answer can reply; the

overheard data can be cached by a node. Finally, it operates over any transport
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Figure 4.3: An example of unified handling of DTN and connected networks

that can deliver datagrams, and has no dependency on IP, although it can fully

utilize IP connectivity when available. This allows mobile nodes to issue requests

for data as soon as they have connectivity and without host address assignment.

Thus, DTN and MANET support is embedded in the NDN architecture and

the communication model remains the same regardless of the types of networks,

which greatly simplifies the mobile application designs. The example shown in

Figure 4.3 illustrates how mobile communication under different connectivity con-

ditions is supported in NDN. A mobile phone uses WiFi to request traffic infor-

mation. The reply to this requests is happened to be overhead by a car, which

opportunistically caches it for potential future use. Later, if the car encounters

other cars, it can use the cached data to reply their requests for the same traffic

information, even in an open field without wireless coverage using Dedicated Short

Range Communications (DSRC) [Ken11, WAK12].

4.1.4 Support of mobile data consumers

Supporting mobile consumers in IP mobility solutions is not trivial. As a require-

ment of IP’s host-to-host communication model, the consumers have to acquire

IP addresses, set up connections or sessions, and perform updates whenever the
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IP addresses change.

NDN’s receiver-driven communication model supports the mobile consumers

in a straightforward way without creating unnecessary hassles. A consumer can

send out request for data directly without address assignment or connection setup.

When the Interest travels to the data producer, it sets up a temporary reverse

path between the consumer and the producer, along which the corresponding data

packet flows back. Such per-packet reverse paths are set up on-demand, short-

lived (approximately the same to the round trip time), and are cleared once the

the desired data packets come back. Hence, even if the consumers are on move, not

a single entity is required to perform any kind of special operations. As depicted

in Figure 4.4, the data naturally follows a different reverse path to the consumer

after it moves.

4.1.5 Support of mobile data producers

In NDN, the network needs to route Interests based on data names. Unless the

mobile producers dynamically announce their namespaces via routing system,
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mobile producers must have a way for Interests to reach them.

The invaluable lessons learned from IP mobility support research can be ap-

plied to solve the problem. Each mobile producer can be assigned a namespace,

such as /twitter/foo, under which it publishes its data regardless of its location.

Such a namespace can be used as the stable identifier for the mobile. The locator,

on the other hand, can be a name that indicates the location of the mobile (e.g.

the name prefix announced by the access network). The mapping between the

identifier and the locator can be provided either by broadcasting or intermediate

nodes such as DNS servers.

NDN is broadcast friendly. Interests are relatively small in size, making it

feasible to broadcast Interests in a restricted domain in order to track the location

of a mobile producer. Moreover, if multiple consumers are interested in fetching

data from a mobile producer, only one Interest would be broadcasted and the data

that describes the location of the mobile would be multicasted to all consumers.

Figure 4.5 illustrates an example where three consumers utilize broadcast Interests

to track a mobile producer. Thus, it is the simplest and most robust way to

support mobility in a broadcast domain (a small network or a broadcast overlay

spanning over large networks).

The broadcast approach has even more advantages if the communication media

is broadcast in nature, such as the wireless LAN, where only one Interest-Data

exchange is needed even if there are multiple consumers interested in fetching the

mobile producer’s data.

When the broadcast is not feasible, DNS can be exploited to store the map-

ping between the mobile’s namespace and its location. An example of DNS-based

approach is shown in Figure 4.6. When the user with /twitter/foo namespace

is visiting Stanford campus, he can discover the name prefix of the Stanford net-

work and update the location field of the DNS record to be /stanford. To fetch

this user’s data, a consumer queries DNS and sends an Interest /twitter/foo/
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tweets/95 using the returned location name /stanford as forwarding hint [AYW12],

which is not a part of the data name being requested but indicates a suggested

direction for routers to forward the Interests towards the mobile producer.

4.1.6 The power of data fetching strategies

The requirements for data fetching may vary a lot depending on application sce-

narios. Some may wish to have reliable delivery; some may wish to fetch content

in spite of intermittent connection due mobility or power off; some may wish to

use whichever interface that has best connectivity or to use all interfaces simulta-

neously.

NDN’s forwarding strategy, which determines how alternative paths are uti-
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Figure 4.6: A consumer fetches data of a mobile producer using DNS-based ap-

proach

lized, suits well for such requirements on flexibility. This is enabled by the per-

packet statistics and loop-free Interest forwarding, and it also takes into account

different properties of the interfaces (e.g., whether it is a broadcast interface or

whether the connectivity is free) and namespaces when determining the strat-

egy of Interest forwarding. Thus, instead of a one-size-fits-all approach, different

strategies could be designed to satisfy different requirements.

For example, to exploit multiple interfaces, a strategy may occasionally send

the same Interests out via multiple interfaces (since there is no danger of looping)

and run experiments to obtain round-trip delays of different interfaces, and then

decide which one to use until it is time for the next experiment, as illustrated in

Figure 4.7. Or different Interests could be sent out through different interfaces

simultaneously, the portions adjusted according to the measured delays and the
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cost, in order to utilize all the interfaces.

Another example is to explore alternative means of fetching data produced

by mobiles. Various means can be adopted by the strategy. It could first use

local broadcast Interest to see if the data is already cached nearby by some peer

consumers. It may send Interests directly towards to mobile producers use the

most recent known “locations” reported by the mobiles (which may be obsoleted

as the mobiles may not even have connectivity at the time). If the mobile has

some designated storage servers to backup its data, the consumer may also send

Interests to such servers. In fact, the consumer could also run experiments, as

shown in Figure 4.8, by occasionally employing all these measures simultaneously

to determine the best way of Interests dispatching in order to increase the chance

of successful data fetching with minimal delay.

4.2 Related Work

M. Meisel et al. [MPZ10] criticized the current practice of using the Internet

protocol stack in the wireless ad hoc networks and argued that mobile ad hoc

networks can be made more effective and efficient through NDN.
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data generated by a mobile producer

G. Tyson et al. [TSR12] surveyed several new Internet architecture projects

and identified benefits and challenges brought from transforming into information-

centric communication in terms of mobility support.

Some proposals [HNG12, KKK12, RLZ12] has been published to handle the

mobility in NDN. However, they mainly focused on traditional point-to-point

communication scenarios and tried to directly map the IP mobility solutions onto

NDN. Their perspective on mobility support resembles those of the IP mobility

solutions and did not fully take the advantages brought by NDN’s transformational

architectural shift.
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CHAPTER 5

Exploring New Design Patterns for Distributed

Applications

In this chapter, we move on to discuss the new design patterns for distributed ap-

plications over NDN using an application-driven approach. Unlike in the current

Internet, where the application-established names are meaningless to the under-

lying IP networks, NDN uses application defined names for data delivery. That

is, application data names are both used by the network and by the applications.

This empowers applications to adopt new designs that they are unable to adopt in

the current Internet, which better align with the data-centric nature of application

requirements.1

This chapter is organized as follows. Section 5.1 describes two expeditionary

examples of distributed applications that we developed in order to explore the

design space and identify useful building blocks for distributed applications over

NDN. In Section 5.2 we present ChronoSync dataset state synchronization proto-

col. In Section 5.3 we show the distributed and data-centric approach of securing

distributed applications. We demonstrate ChronoShare, a distributed file sharing

application that is based on ChronoSync and secured in a data-centric way in

Section 5.4.

1The mobility related problems for distributed applications are taken care of by applying
the techniques described in Chapter 4. Thus, while we focus on other aspects of new design
patterns of distributed application design in this chapter, the designs we proposed effectively
provide mobility support for mobile devices.
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5.1 Distributed Applications: Two Expeditionary Exam-

ples

Traditional transport services provide point-to-point data delivery and most of

today’s distributed applications, including peer-to-peer applications, heavily rely

on centralized servers. To aid the development of robust and efficient distributed

applications, we envision a fundamentally new building block for distributed sys-

tems which fully takes the advantages brought by NDN. To better understand

the requirements of distributed applications and to explore the design space, we

developed two prototypes of distributed applications that cover the popular main-

stream usages, multi-party audio conferencing and group text chat.

5.1.1 Audio conference tool

Audio conferencing has had a long history starting from conference applications

over APPAnet in the late 70’s. In mid 90’s MBONE [MB] was established and

a set of multimedia communication tools [MJ95, vat] were developed based on

lightweight IP Multicast delivery model. Today, as the demands soar, various

commercial applications such as Skype, Google Hangout, etc., offer audio con-

ferencing functions. Furthermore, web browsers are starting to support realtime

communications capabilities through the projects such as WebRTC [Web], which

is an open project supported by Google, Mozilla and Opera to enable realtime

communications applications to be developed in the browser via simple Javascript

APIs and HTML5.

Hence, we developed an audio conference tool (ACT), aiming to support the

popular application on top of NDN in a decentralized fashion. We show through

the course of design how we exploited the advantages of NDN to accommodate

the communication patterns of conference applications as well as the trade-offs we

made to achieve system simplicity, flexibility, and robustness.
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5.1.1.1 Overview

As an audio conferencing tool, ACT must perform the following three basic tasks

for each user interested in participating in a conference: reporting existing confer-

ences (that a user is eligible to learn), delivering voice data to all participants of a

conference in real time, and media data processing together with a user interface.

The first task is to collect the latest information about all existing conferences,

both scheduled and ongoing ones, and the speakers of each ongoing conference

that the user wants to join. This requires that each Interest packet for conference

information must be propagated to everywhere across the network. ACT chooses

the names for conference information data from a broadcast name space. Once a

user learns about the interested conference and the speakers in that conference call,

she can receive the voice data by sending Interests directly towards each speaker.

Hence, ACT uses two difference name spaces, broadcast name space for conference

information discovery and routable name space for voice data delivery. Interests

for the former operates at the frequency of conference launching or speaker joining,

while the Interests for voice data streams need to be generated at the frequency

of audio packet generation which can be orders of magnitude higher.

The third task, media data processing and user interface design, is a necessary

component of ACT but largely decoupled from network specifics. To focus our

effort on NDN specific design issues, ACT simply adopted a client-server based

open source audio application package, and embeds the modules for speakers dis-

covery and voice data distribution in the original server code, leaving the client

intact. A converted server runs on the same node with the client, and communi-

cates with the client using the standard IP protocol stack, while at the same time

communicates with other converted servers over NDN.

Figure 5.1 shows a simple block diagram of our design. A separate module

handles the conference discovery and facilitates the task of joining a conference.

50



Client

Speaker
Discovery

Voice Data
Distribution

ServerConference
Discover

IP

NDN NDN

IPC

User Device

Figure 5.1: An overview of ACT design

The decoupling of conference discovery from voice media delivery gives us the flex-

ibility to extend ACT with other features such as video, distributed whiteboard,

and text messaging. In the rest of this section we describe each of the above three

pieces in more detail.

5.1.1.2 Conferences discovery

ACT allows each user to retrieve a list of scheduled or ongoing conferences, and

to announce a new conference to potential participants. To retrieve conference

information, a user must know the name for the conference information data

a priori, before she has any knowledge about the conferences to be discovered.

Hence, conference initiators and participants must agree on the name prefix for

conference description data by following some established application naming con-

ventions. An example of the name for conference data within the NDN scope is

/ndn/broadcast/conference/conference-list. The first name component de-

fines the scope of the network (within NDN testbed); the second one indicates a

broadcast namespace (within the NDN testbed scope); the next name component

identifies the application type, and the last component specifies the data that the

participant is interested in.
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Following the established naming convention, a conference initiator announces

the conference by creating the conference description data with a proper name

under the conference-list prefix. Since there may be multiple different conference

description data packets, and any of them can satisfy the Interest with name /ndn/

broadcast/conference/conference-list, we need to ensure that a participant

can learn all conferences under that prefix. Furthermore, ACT must also promptly

remove finished or canceled conferences from the conference list presented to the

users.

Conference announcement

A user announces a conference by creating a data object describing the con-

ference in the “Session Description Protocol (SDP)” [HJP06] format according

to the user’s input, such as estimated starting time, media type supported, etc.

The name of the data is constructed by appending the specific conference name

to the conference-list prefix. This data is then stored in the application buffer

until the conference ends. As an example, assuming that node A in Figure 5.2

announces a conference named ”lunch-talk”. Node A listens to Interests with the

conference-list prefix, and whenever it receives such an Interest, it responds with

the Data packet containing the conference description. As the Data packet travels

to the requester(s), it may be stored at the intermediate routers to satisfy Interests

from other potential participants in the future. A “freshness” time is specified

in the Data packet which determines the maximum time it can be considered

valid. In general, the conference organizer would only receive one conference-list

Interest within the “freshness” seconds, as the Interests for the same name will

be consumed by the routers that have the cached conference description data.

A conference organizer may also delegate the task of announcing the conference

to a third-party node or other participants in the conference. The delegatee in turn

can store the conference description data and respond to conference-list Interests

on behalf of the organizer in cases when the organizer gets disconnected, or simply
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Figure 5.2: An example of conference discovery

goes offline when the conference is still ongoing.

Conference enumeration

When a user turns on ACT, the conference discovery module sends an Interest

with the name of conference-list prefix, as node B in Figure 5.2 does. This Interest

can be satisfied by any conference description Data packet. As multiple conference

announcements may exist, the module needs to send multiple Interests to discover

all existing conferences. However simply sending the same Interest again may not

bring back new conference description data, as the Interest is likely be satisfied by

the previous Data packet that the module just fetched and is now in the router’s

cache.

One way to addresses this issue is to include an “exclude filter” along with

the Interest in the “Selector” field (see Figure 2.3) as a means for the requester

to express explicitly the names of the data it has already received. Depending on

the number of names to be excluded, the conference discovery module may simply
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/ndn/broadcast/conference/conference-list ∉ {lunch-talk | egsa}

Figure 5.3: An Interest with exclude filter

enumerate the known conference names in the exclude filter of one Interest or split

them among multiple Interests. For example, after node B in Figure 5.2 learns

the conference “lunch-talk”, it will send another Interest with the same name of

conference-list but specify in the exclude filter “lunch-talk”, to retrieve description

data about “egsa” announced by node C or any other unknown conference that

may exist. Figure 5.3 shows such an Interest that excludes both “lunch-talk” and

”egsa”.

To get informed immediately whenever a new conference is announced, ACT

keeps an outstanding conference-list Interest all the time. That is, it issues an-

other Interest excluding all known conferences as soon as the previous Interest

brings back a Data packet or otherwise expires. Although a large number of ACT

conference discovery modules may be running simultaneously and all sending out

Interests for conference-list all the time, Interests carrying the same name will be

aggregated by intermediate routers, and thus there is only one PIT entry for the

name conference-list at any router.

5.1.1.3 Speakers discovery

The participants of a conference fall into two categories, the speakers who produce

the voice data, and the listeners who request the voice data. ACT only needs to

know the speakers in a conference in order to retrieve data from them. For small-

scale conferences where every participant is likely to speak, each user can be

simply regarded as both a speaker and a listener. For large conferences, generally

speaking, there are fewer speakers than listeners. ACT scales well by tracking

only a list of active speakers, instead of all the participants.
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Speaker discovery is done when a user joins a conference. The mechanism of

speaker discovery is similar to conferences discovery. An example name prefix for

speaker description (speaker-list prefix) is /ndn/broadcast/conference/lunch-

talk/speaker-list. When in “speak” mode, an ACT converted server generates

and keeps in buffer the data in SDP format describing the name prefix it intends

to use for voice data, media type, public key locator, etc. The name of the SDP

data is constructed by appending the user name of the speaker to the speaker-list

prefix. When changed to “listen” mode, ACT removes the SDP data from the

buffer and stops responding to the speaker-list Interest. How a speaker responds

to the Interest and how ACT discovers and keeps a list of active speakers are

exactly the same as in conferences discovery, except that there is no delegation of

speaker announcement.

5.1.1.4 Voice data distribution

A routable name prefix (e.g., /ndn/ucla.edu/cs/zhenkai) is used by each speaker

for its voice data. Because a speaker may generate multiple data streams, further

name components such as device ID and audio codec can be appended to the

name prefix to identify each stream. A device ID represents the physical device

that produced the data stream, and it should be unique within the local network

so that the access router knows where to forward Interests for a particular data

stream. A speaker should include all name prefixes for all the data streams it

produces in the speaker description data.

Segments from each voice data stream produced by the speaker are sequentially

named and stored in a circular buffer. A typical name for a data segment may

look like: /ndn/ucla.edu/cs/zhenkai/universe/celt/928.

An ACT converted server sends Interests for all the voice data streams it

learned from speaker discovery. When the segment number of a data stream is
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Figure 5.4: Listeners in ACT maintains a pipeline of pending Interests for each

audio stream to minimize the delay.

unknown, an Interest is sent asking for the latest data under the stream name

prefix (thus no cached content can satisfy this Interest). This ensures that a

listener fetches the latest voice content produced by the speaker, instead of lagging

behind. When a data segment from this stream is brought back, the server learns

the segment number being used at the speaker and starts to explicitly set segment

numbers in the future Interests.

In a network with high latency the Interest-Data round trip can delay the

reception times of the voice data packets, rendering them unplayable or with low

quality. To address this issue ACT takes the same pipeline approach, where the

listener always maintains a certain number of outstanding Interests for each voice

data stream. That is, whenever an Interest brings back a Data packet or is expired,

the listener issues a new Interest, thereby restoring the number of outstanding

Interests in the pipeline. Consequently, the speaker’s voice data would be fetched

immediately when it is generated, as depicted in Figure 5.4.
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5.1.1.5 ACT Implementation

We have implemented a proof-of-concept ACT converted server as an extension

to the open source project Mumble [Mum]. We made “murmurd”, the server part

of Mumble to exchange data with other murmurds over NDN. The basic function

of audio conference is working (e.g. managing speakers, retrieving voice data,

etc), and trials of ACT had been carried out on NDN testbed with up to dozens

of participants from all over the continental US, and the subjective voice quality

was quite good.

Stepping up a level, we believe that ACT shows a promising example of how

to move existing applications into NDN. ACT keeps the Mumble’s client-server

model intact, and modified the server to perform NDN data transport. Not only

this approach leaves the entire client part untouched, but also the converted ACT

server can be a stand alone module sitting between an NDN network and the

existing Internet to enable an ACT conference call across the boundary.

5.1.2 Group text chat

Another widely used distributed application is group text chat. Various group

text chat applications and protocols, be it proprietary or open, have been designed

and implemented, among which XMPP [Sai11] is perhaps most popular due to the

open standard and open systems approach, by which anyone may implement an

XMPP service and interoperate with others’ implementations. Although XMPP

uses a client-server architecture (clients do not talk to each other directly), it

is decentralized in that there is no central authoritative server, and anyone may

run their own XMPP server by their own. To further deepen our understanding

about the requirements and design space of distributed applications in NDN, we

developed a fully distributed group text chat application based on the XMPP

protocol.
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Similar to ACT’s approach of adapting the existing code, we embeds in an

open-source XMPP server implementation, “jabberd” [jab], the modules for users

discovery and message distribution over NDN2. Meanwhile the adapted server

communicates over IP to any XMPP-compatible chat client, for instance Adium,

Empathy, iChat, Pidgin, etc. [Adi, Emp, iCh, Pid], that is running on the same

node.

This use case, though seems to be only a trivial variance of audio conferenc-

ing, proved to impose quite different requirements, in that a large number of users

may be actively involved in the chat, their messages intermingled, whereas in au-

dio conferencing it is usually that one speaker speaks for a relatively long duration

during which others passively listen to the speech. Thus, instead of only tracking

audio streams from a small number (usually one) of speakers, the group text chat

application has to fetch messages dispersed among many users. A straightfor-

ward approach to handle this issue [ccn] is to use a global sequence number, and

whoever wants to send a message to the rest of the group simply increments the se-

quence number by one and publishes the message under the name constructed by

appending the sequence number to a name prefix in broadcast namespace (for ex-

ample, /ndn/broadcast/textchat/group1/35). However, this simple approach

has two major drawbacks: 1) the message data is under a broadcast name, which

is undesirable as any request for such data will have to be broadcasted, even when

it is unnecessary; 2) it does not handle simultaneous data generation, where more

than one users try to send messages.

We thus resort to an alternative approach, to keep a roster of users in a group

and to send an Interest with routable name to each user to request their messages,

if there is any. While this approach handles correctly the naming of the data and

the simultaneous data generations, it creates a long list of names in the exclude

2As the groups, or chat rooms, can be discovered using the conference discovery module
ACT, we focus on the text chat application itself.

58



filter and a mesh of pending Interests for messages, which, although mitigated by

the Interest aggregation, is still costly and inefficient.

5.2 ChronoSync: Efficient Dataset State Synchronization

In the development of the two expeditionary applications, we noticed that dataset

synchronization is an inherent requirement by distributed applications. For ex-

ample, the group text chat problem can be trivially solved if there is a convenient

way to synchronize the chat data produced by the all the users in a chatroom; in

ACT, there is also a need to synchronize the conference lists and speaker lists; in

joint editing applications users have to synchronize the revisions of the files.

Many of such distributed applications demand efficient and robust synchro-

nization of datasets among multiple parties. The research community has been

working on distributed system synchronization since the early days of the Inter-

net [Lam78] and has produced a rich literature of solutions. Quite a few popular

applications like Dropbox and Google Docs, on the other hand, are implemented

based on a centralized paradigm, which generally simplifies the application de-

signs and brings many other advantages, but also results in single points of failure

and centralized control of the data. At the same time, a number of different

peer-to-peer solutions [AS04], including the recently announced BitTorrent Sync

service [bita], represent another direction in the searching of efficient dataset syn-

chronization solutions, which requires the maintenance of a sophisticated peer-

to-peer network overlay structure, whose mis-matching with underlying topology

undermines the benefits of application-level multicast, and often the critical nodes

for participants rendezvous.

In this section, we describe ChronoSync, an efficient and robust protocol to

synchronize dataset state among multiple parties in NDN. We first present an

overview of ChronoSync components, and then explain the naming rules in Sec-
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tion 5.2.2. Section 5.2.3 shows how ChronoSync maintains the knowledge about

the dataset and Section 5.2.4 describes how the changes to the dataset propagate

to all participants. Section 5.2.5 and 5.2.6 discuss how ChronoSync handles simul-

taneous data generations and network partitions. Section 5.2.7 presents evaluation

results.

To better illustrate the basic components of the ChronoSync design, we use a

group text chat application, ChronoChat, as an example throughout the paper.

While a real chat application includes a number of essential components, such as

roster maintenance, in our example we introduce only elements that are directly

relevant to ChronoSync.

5.2.1 Overview

In the core of any ChronoSync-based application there are two interdependent

components, as shown in Fig. 5.5: the ChronoSync module that synchronizes the

state of the dataset and the application logic module that responds to the change

of the dataset state. In ChronoChat, ChronoSync module maintains the current

user’s knowledge about all the messages in the chatroom in the form of a digest

tree, as well as history of the dataset state changes in the form of a digest log.

After ChronoSync module discovers that there are new messages in the chatroom,

it notifies ChronoChat logic module to fetch and store the messages.

To discover dataset changes, the ChronoSync module of each ChronoChat

instance sends out a sync Interest, whose name contains the state digest that is

maintained at the root of the digest tree. Generally, with the help of digest tree

and digest log, ChronoSync can infer dataset changes directly and reply to the

sync Interest with the data containing the changes, which we henceforth refer to

as sync data. In cases of network partitioning, ChronoSync also uses recovery

Interests and recovery data to discover the differences in the dataset state.
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Figure 5.5: ChronoSync overview

ChronoSync focuses solely on facilitating the synchronization of the knowledge

about new data items in the dataset, leaving the decision on what to do after

ChronoSync discovers state changes at the application’s discretion. For example,

the sync data in ChronoChat brings back the names of messages newly added to

the chatroom, and thus a user’s knowledge of the dataset is brought up to date.

However, the user may decide whether to fetch all the missing messages or just

the most recent ones, if the total number of missing messages is large (e.g., after

recovery from a network partition).

5.2.2 Naming rules

One of the most important aspects of application design in NDN is naming, as the

names carry out several critical functions. The name carried in an Interest packet

is used by the network to figure out where to forward it and to determine which

process to pass it to when it reaches the producer. Also proper naming rules can

greatly simplify the design of applications.
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There are two sets of naming rules in ChronoSync: one for application data

names and one for sync data names.3

We design the application data names to have routable name prefixes so that

the Interests can be forwarded towards the producers directly. These prefixes can

be constructed by appending one or more components under a prefix assigned by

the Internet provider. For example, part (1) of the chat data name in Fig. 5.6a is

such a prefix. The purpose of the part (2), which includes the application name

and the chatroom name, is to demultiplex the Interest once it reaches the data

source: it identifies the process that is responsible for handling such Interests.

The data generated by a user is named sequentially. For example, in Chrono-

Chat, the initial message from a user to the chatroom has sequence number zero

and whenever a new message is generated, be it a chat message or user presence

message, the sequence number is incremented by one. As a result, the complete

knowledge of the user can be compactly represented by just one name. Assume

the name shown in Fig. 5.6a is the latest chat data name used by Alice. We can

infer from the naming rules that Alice has produced 792 pieces of chat data to

this chatroom, with sequence numbers ranging from 0 to 791.

Similarly, the name for sync data (Fig. 5.6b) also consists of three parts. Part

(1) is the prefix in the broadcast namespace for a given broadcast domain. A

broadcast prefix ensures that the sync Interests are properly forwarded to all

participants of a group, as it is often impossible to predict who will cause the

next change to the dataset state. Part (2) serves the purpose of demultiplexing

(similar to that of the application data name), and the last part carries the latest

state digest of the Interest sender.

3The naming for recovery data will be discussed in Section 5.2.6.
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/wonderland/alice/chronos/lunch-talk/791

(1) (2) (3)

(a) An example of chat data name

/ndn/broadcast/chronos/lunch-talk/4b01...

(1) (2) (3)

(b) An example of sync data name

Figure 5.6: Naming rules of ChronoSync

5.2.3 Maintaining dataset state

The application dataset can be represented as the union of the subsets of data

generated by all producers.

Since the knowledge of a data producer can be solely represented by its name

prefix and the latest sequence number, ChronoSync tracks the latest application

data name of each producer in order to maintain up-to-date knowledge of the

dataset. For the sake of simplicity in writing, we refer to the latest application

data name of a producer as its producer status.

Inspired by the idea of Merkle trees [Mer], ChronoSync uses a digest tree to

quickly and deterministically compress knowledge about the dataset into a crypto

digest, as illustrated in Fig. 5.7. 4 Each child node of the tree root holds a

cryptographic digest calculated by applying, for example, SHA-256 hash function

over a user’s producer status. Recursively applying the same hash function to

all child nodes of the root results in the digest that represents state of the whole

dataset, which we refer to as the state digest. To ensure that every participant

calculates the same state digest when observing the same set of producer statuses,

the child nodes are kept in the lexicographic order according to their application

4While we use an one-level hash tree here, a more canonical form of hash trees can be used
if the applications demand different naming rules.
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Figure 5.7: An example of digest tree used in ChronoChat

data name prefixes.

The digest tree is always kept up-to-date to accurately reflect the current state

of the dataset. Whenever a ChronoChat user sends a new chat message or learns

about the name of a new message from another participant, the corresponding

branch of the digest tree is updated and the state digest is re-calculated.

As an optimization, each party keeps a “digest log” along with the digest tree.

This log is a list of key-value pairs arranged in chronological order, where the

key is the state digest and the value field contains the producer statuses that

caused the state change. An example of digest log is illustrated in Table 5.1.

The log is useful in recognizing outdated state digests. For example, when a user

resumes from a temporary disconnection and sends out a sync Interest with an

outdated state digest, other parties, if recognizing the old digest, can quickly infer

the differences between the dataset states and promptly reply the sender with

missing data names.

Although the digest log facilitates the process of state difference discovery in

many cases, it is not essential ensure the correctness of the ChronoSync design.

Depending on the available resources, applications can set an upper bound on the

size of the digest log, purging old items when necessary.
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State Digest Changes

0000... Null

9w35... [Alice’s prefix, 1]

... ...

23ab... [Bob’s prefix, 31], [Alice’s prefix, 19]

05t1... [Bob’s prefix, 32]

Table 5.1: An example of digest log

5.2.4 Propagating dataset changes

To detect dataset changes as soon as possible, every party keeps an outstanding

sync Interest with the current state digest. When all parties have the same knowl-

edge about the dataset, the system is in a stable state, and sync Interest from each

party carries an identical state digest, resulting in efficient Interest collapsing in

NDN routers [ZEB10]. Fig. 5.8a shows an example of a system in stable state,

where there is no ongoing conversation in a chatroom.

As soon as some party generates new data, the state digest changes, and the

outstanding Interest gets satisfied. For example in Fig. 5.8b, when Alice sends a

text to the chatroom, ChronoSync module on her machine immediately notices

that its state digest is newer and hence proceeds to satisfy the sync Interest with

sync data that contains the name of text message. Because of the communication

properties of NDN, the sync data is efficiently multicasted back to each party in

the chatroom. Whoever receives the sync data updates the digest tree to reflect

the new change to the dataset state, and sends out a new sync Interest with the

updated state digest, reverting the system to a stable state. Meanwhile, the users

may send Interests to request for Alice’s text message using the data name directly.

In other more complex applications, the sync data may prompt the applications

to perform more sophisticated actions, such as fetching a new version of a file and
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(a) For each chatroom, at most one sync Interest is transmitted over a
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in the stable state. Due to space limit, only the PIT of router C is
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(b) The state change caused by Alice’s new message is multicasted to

other two users following the PIT entries set up in routers by sync

Interests

Figure 5.8: State change propagation in ChronoSync

applying changes to the local file system.

Normally, the state digest carried in the sync Interest is recognized by the

Interest recipients: it is ether the same as the recipient’s current state digest or

the previous one if the recipient just generated new data. However, even in a

loss-free environments, out-of-order packet delivery can result in receiving sync

Interests with digests that cannot be recognized. For instance, in Fig. 5.8b, Ted ’s

sync Interest with the new state digest (after incorporating Alice’s sync data into

digest tree, not shown on the figure) may reach Bob before he receives Alice’s sync
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data, due to the possible out-of-order delivery in the transmission.

To cope with this problem, ChronoSync employs a randomized “wait timer”

Tw, with value being set approximately on the order of the propagation delay.

More specifically, a recipient sets up the wait timer Tw when an unknown digest is

received and postpones the processing of the corresponding sync Interest until the

timer expires. In the example mentioned above, Bob’s state digest would become

the same as the new digest after Alice’s reply reaches him, before Tw expires.

5.2.5 Handling simultaneous data generations

In simultaneous data generation cases, more than one data producer reply to the

outstanding sync Interests. As one Interest can only bring back one piece of data

in NDN, simultaneous data generations would partition the system into two or

more groups, with each group maintaining a different state digest, depending on

whose sync data they have received. At the same time, users in different group will

not be able to recognize each other’s state digest. This is illustrated in Fig. 5.9,

where Alice and Bob reply to the sync Interests at the same time and only Bob’s

sync data reaches Ted. Thus, the new state digest of Alice is different from that

of the other two.

This problem can be solved with the exclude filter [exc], which is one of the

selectors that can be sent along with the Interest to exclude data that the requester

no longer needs. When the wait time Tw times out, Ted proceeds to send a sync

Interest with the previous state digest again, but this time with an exclude filter

that contains the hash of Bob’s sync data. Routers understand that Bob’s sync

data, although has the same name as the one carried in the sync Interest, cannot

be used as the reply to the Interest. As a result, this sync Interest brings back

Alice’s sync data from router C’s cache. Similarly, Alice and Bob also retrieve

each other’s sync data with the help of the exclude filter. At this point, all three
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Figure 5.9: An example of simultaneous data generation

users have obtained the knowledge about the simultaneously generated data and

compute an identical state digest.

If there are more producers involved in a simultaneous data generation event,

multiple rounds of sync Interests with exclude filter have to be sent. Each of such

Interest has to exclude all the sync data of a particular state digest known to the

requester so far.

5.2.6 Handling network partitions

When network partitions happens, the users become physically divided (as op-

posed to the logical division in the simultaneous data generation case) into mul-

tiple groups. Although within each group users may continue to communicate

due to ChronoSync’s decentralized design, there is a challenging synchronization

problem when the network partition heals: parties in different groups accumu-

lated different subsets of data and it is impossible for them to recognize each

other’s state digests. Different from what happens in simultaneous data gener-

ations, where multiple users reply to the same sync Interest with different sync

data, during network partitioning an unknown number of sync data with different

state digests may have been generated by multiple parties, rendering the exclude

filter ineffective in determining the differences of dataset. Hence, when the Inter-
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/ndn/broadcast/chronos/lunch-talk/recovery/ks23...

(1) (2) (3) (4)

Figure 5.10: An example of recovery Interest

est with exclude filter times out (such Interests should have very short lifetime, as

the sync data, if there is any, should already be cached in the routers), Chrono-

Sync infers that the network partitions have happened and measures have to be

taken to resolve the differences. Depending on specific application requirements,

various set reconciliation algorithms [EGU11, Y 03, J 02] can be used to solve this

problem.

For applications such as ChronoChat, for example, ChronoSync resorts to a

simple but effective recovery procedure, outlined as follows. The recipient of the

unknown digest sends out a recovery Interest, as shown in Fig. 5.10. It is similar

to a normal sync Interest, but has a “recovery” component before the digest and

includes the unknown state digest, instead of the one in the root of the local digest

tree. The purpose of such an Interest is to request missing information about the

dataset from those who produced or recognized the unknown state digest. Those

who recognize the digest (e.g., having it in their digest log) reply the recovery

Interest with the most recent producer status of all users, and others simply ignore

the recovery Interest. Upon receiving the recovery reply, the recipient compares

the producer statuses included in the reply with those stored in the local digest

tree and updates the tree whenever the one in the reply is more recent. This

recovery procedure guarantees that the system will revert to the steady state

within few recovery rounds (e.g. one round for two groups that have different

state digests).
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5.2.7 Evaluation

To understand characteristics and tradeoffs of the ChronoSync protocol, we con-

ducted a number of simulation-based experiments of the group text chat service

(ChronoChat) using NS-3 [ns3] with ndnSIM module [AMZ12], which fully imple-

ments the NDN communication model. In particular, we are interested in confirm-

ing that ChronoSync propagates state information quickly and efficiently, even in

face of network failures and packet losses. To get a baseline for the comparison,

we also implemented a simple TCP/IP-based approximation of the centralized

Internet Relay Chat (IRC) service, where the server reflects messages from a user

to all others. For simplicity of the simulation, we did not implement heartbeat

messages for either ChronoChat or IRC service simulations. Also, chat messages

in the simulated ChronoChat application are piggybacked alongside with the sync

data. That is, when, for example, Alice sends a new message, her ChronoChat app

not only notifies others about the existence of a new message, but also includes

the actual message data in the same packet.

In our evaluations we used the Sprint point-of-presence topology [SMW04],

containing 52 nodes and 84 links (Fig. 5.11). Each link was assigned measurement-

inferred delay, 100 Mbps bandwidth, and drop-tail queue with the capacity of 2000

packets. As the size of the text message is usually small, there is no congestion

in the network. All nodes in the topology act as the participants of a single

chatroom. The traffic pattern in the room was determined based on the multi-

party chat traffic analysis by Dewes et al. [DWF] as a stream of messages of sizes

from 20 to 200 bytes with inter-message gap following the exponential distribution

with the mean of 5 seconds.
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Figure 5.11: Sprint point-of-presence topology

5.2.7.1 State synchronization delay

ChronoSync-based applications are fast in synchronizing dataset state. To evalu-

ate this property quantitatively, we define state synchronization delay to be the

the time interval between the message generation and discovery of this message

by all of the chatroom participants. We performed 20 runs of the chatroom simu-

lation with 52 participants that produced together a total of 1000 messages under

various network condition. Each individual simulation run featured different sets

of messages injected to the chatroom, with different inter-message delays, differ-

ent message sizes, and different order of participants talking. In the IRC case, we

randomly chose one of the nodes in the topology as the position of the central

server for each run.

Performance under normal network conditions

As an initial step, we evaluated ChronoChat under normal network conditions

without network failures or packet losses, which allowed us to understand the

baseline performance of ChronoSync protocol.

Since in ChronoChat sync data always follows optimal paths built by out-

standing sync Interests, the synchronization delay is significantly lower, compared

to that of the client-server based IRC implementation, as shown in Fig. 5.12: for
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Figure 5.12: Distribution of message delays

ChronoChat, more than 40% of all messages sent in 20 runs experienced delay

less than 20 ms, compared to ≈13% of messages in IRC case for the same delay

range.

Performance in lossy environments

We evaluated ChronoChat in lossy network environment, with varying level

of per-link random packet losses, ranging from 1% to 10%. Fig. 5.13 summa-

rizes the simulation results in form of cumulative distribution function graphs for

ChronoChat and IRC services (for better visual presentation, x-axis is presented

in the exponential scale and y-axis is in the quadratic scale). A conclusion can

be made from these results that the performance of ChronoChat stays practically

unaffected if the network experiences moderate levels of random losses (≤1%).

Moreover, even if network conditions deteriorate and random losses increase to

abnormally high values (5%–10%), ChronoChat continues to show significantly

shorter state synchronization delay, compared to IRC-like systems.

Overall, regardless of the random loss rate value, more messages in Chrono-

Chat experienced smaller delay, compared to those in IRC. This trend is more

clear as the loss rate grows: the percentage of messages with small delay drops

rapidly in IRC and in ChronoChat it drops more gracefully. However, a careful
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Figure 5.13: Packet delivery delay in face of packet losses

reader may note that there is a small fraction of messages in ChronoChat that

experienced longer delay, compared to IRC. This is because ChronoChat uses

NDN’s pull based model: a receiver needs to discover a new state first in order to

request for it, as opposed to TCP/IP where the source keeps (re-)sending the data

packets until it is acknowledged by the receivers. In cases where the sync Interests

or sync data are dropped so heavily that some participants are not aware of the

state change, it has to wait until these participants re-express sync Interests or

another state change occurs before the message can be disseminated to all users.

We believe that adaptive adjustment of sync Interest re-expression interval, de-

pending on application requirements and network conditions, should be able to

keep synchronization delay within reasonable ranges.

5.2.7.2 Synchronization resiliency to network failures

Another key feature of ChronoSync is its serverless design, which means that users

can communicate with each other as long as they are connected. Even in the case

of network partitioning, the group of participants in each partition should still

be able to communicate with each other, and when the partition heals, different

groups should synchronize the chatroom data automatically.
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Figure 5.14: Simple 4-node topology with link failures (link delays were chosen

uniformly at random in the interval 1–2 ms)

Basic verification of link failure resiliency

To verify this property we conducted a small-scale 4-node simulation with link

failures and network partitioning (Fig. 5.14). The total simulation time of 20 min-

utes was divided into 5 regions: 0–200 seconds with no link failures (Fig. 5.14a),

200–400 seconds with one failed link between nodes 0 and 1 (Fig. 5.14b), 400–

800 seconds with two failed links between nodes 0, 1 and 2, 3 (partitioned network,

Fig. 5.14c), 800–1000 seconds with one failed link between nodes 2 and 3, and fi-

nally 1000–1200 seconds period with no link failures.

The results are depicted in Fig. 5.15, visualizing node 0’s knowledge about the

current states of all other participants as a function of time. This figure not only

confirms that the parties within a connected network continue to communication

during the partitioning event, but also the fact that when the network recovers

from partitioning, the state is getting synchronized as soon as Interests start

flowing through formerly failed links.

Impact of link failures

To quantify the effect of network failures on ability of text chat participants

to communicate with each other, we again used our 52-node topology that is now

subjected to varying level of link failures. In each individual run of the simulation

we failed from 10 to 50 links (different set of failed links in different runs), which

corresponded to ≈10% and ≈50% of the overall link count in the topology. We

performed 20 runs of the simulation for each level of link failures, counting the
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Figure 5.15: ChronoChat performance in face of link failures (sequence number

progress)

number of pairs that are still able to communicate. As shown in Fig. 5.16, we use a

violin plot5 for this graph to highlight a bimodal nature of the distribution for the

percent of communicating pairs in the centralized IRC service: with significantly

high probability the users were almost not able to communicate at all (notice the

portion of the violin plots near the bottom of the y-axis for IRC). ChronoChat,

being completely distribute, always allows a substantial number of pairs able to

communicate. For any centralized implementation, like IRC, there is always a

single of point of failure and the communication can get completely disrupted

even with a small level of link failures.

5.2.7.3 Network utilization pattern

To understand how the fast state synchronization and robustness to links failures

in ChronoSync relates to the network utilization, for the same sets of experiments

5The violin plot is a combination of a box plot and a kernel density estimation plot. Wider
regions represent higher probability for samples to fall within this region.
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Figure 5.16: Distribution of the number of communicating pairs versus number

of failed links (violin plot)

we collected statistics about the number of packets transferred over each link in the

topology (we call it packet concentration for a link). When counting the packets,

we included both Interest and data packets in ChronoChat, and both TCP DATA

and ACK packets in IRC. The obtained data for our 52-node topology experiment

is summarized in Fig. 5.17,6 where the links were ordered and visualized by the

packet concentration value ( with 97.5% confidence interval).

The results presented in Fig. 5.17 show that ChronoChat more or less equally

utilizes all of the available network links between participants. 7 Results for

network utilization in IRC case show a completely different pattern. A few links

close to the server have high packet concentrations, with value as large as ≈90,000

packets (≈90 times of the total number of messages in the chatroom) in the link

directly adjacent to the server. Many links that are close to clients have a low

6the figure summarizes data about experiments under ideal network conditions, but results
in lossy environments show similar trends

7When not all nodes participate in chat sessions, the Interest forwarding strategy would
ensure that links that are not on the path between participants, will not be unnecessarily utilized.
The specific implementation of a such strategy is one of our future research directions.
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Figure 5.17: Number of packets in links (packet concentration)

packet concentration, while some links, which are not on the shortest path between

clients and the server, are not utilized at all.

5.2.7.4 Overall overhead

The difference between network utilization patterns in ChronoChat and IRC high-

lights an important design trade-off of ChronoSync protocol. As the primary ob-

jective of ChronoSync is to synchronize the state in a complete distribute manner

as fast as possible, and with ability to mitigate network failures, it utilized more

links in the topology compared to IRC. At the same time, as ChronoSync does

not have triangular data distribution paths and NDN architecture ensures that

each piece of data travels over a link no more than once, the overall overhead

in ChronoChat can be even lower than that of the centralized solutions which

are generally considered to be efficient in network utilization. For example, the

cumulative sum of packet concentrations presented in Fig. 5.18 shows that in our

experiments, where sync Interests are distributed by broadcast, ChronoChat still

has considerably lower overall overhead compared to that of the IRC service.

Note that ChronoSync also features application-specific trade-offs, which can

be directly related to the overall overhead. In particular, when an application
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Figure 5.18: Cumulative sum of per-link packet concentrations

seldom generates new data and can tolerate certain synchronization delay, it is

not necessary to always keep an outstanding sync Interest. Instead, the sync

Interests can be expressed with longer intervals to reduce the overall overhead.

5.3 Securing Distributed Applications

There is also a need to provide security assurance to distributed applications.

Most applications today secures communication channels using protocols such

as SSL/TLS [FKK11, DR08] and IPSec [KS05]. Very often, such conventional

approaches heavily rely on the centralized controllers, which does not align well

with the nature of distributed applications.

In this section, we propose a completely distributed and data-centric security

design to achieve data provenance and access control in the absence of a central

controller.

As described in [ZEB10], NDN distinguishes the use of public keys, i.e. en-

cryption and signature verification, and trust management, which provides an

infrastructure for users to verify the public keys. NDN assumes that each party

is associated with one or multiple keys and each application uses those keys to
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secure data. Trust management, on the other hand, is not confined within specific

applications, and is subject to different policies by different people and different

organizations. Therefore, trust management can and should be provided as sepa-

rate and independent component8. Assuming the trust relationship is established,

the data provenance and access control are managed through the use of public

keys, rather than by setting up sessions from the central controller.

5.3.1 Data provenance

All NDN Data packets are digitally signed, and the name in each Data packet is

cryptographically bound to the corresponding packet content. This ensures both

the integrity and provenance of each Data packet.

5.3.2 Access control

We propose an encryption-based access control scheme that allows only the eligible

participants to decrypt the information about a dataset shared by a group. We

call the user who initiated a sharing group the “organizer” for that group. For

example, the organizer could be the one who started a conference in ACT, or

the one who created a shared folder in a file sharing application. We assume

that organizer knows the identity of all users who are allowed to join the group

it creates. Organizer is the only entity with the permission to add or remove

participants and to devise and enforce the access control policies.

5.3.2.1 Participants control

When an organizer starts a sharing group, it generates a public/private key pair

(Kge, Kgd) to distribute confidential information within the group, where Kge is

used for encryption while Kgd is used for decryption. Confidential information is

8There is ongoing research on trust management in NDN.
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encrypted by organizer using Kge and can only be accessed by those who obtain

Kgd.

Organizer keeps the encryption key secret and distributes the decryption key

Kgd to all legitimate participants in encrypted form to prevent outsiders from

accessing it. An example of a typical Data packet to securely distributed the

decryption key is shown in Figure 5.19. We hence forth call such data that deter-

mines who are the eligible participants the “participants control data”.

All encryption ofKgd (one per participant) are included in a single Data packet.

Although doing so increases the packet size, it allows a better utilization of the

multicast and caching capabilities built in NDN. The hash values of the eligible

participants’ public keys are also included together with the encrypted Kgd. In this

way, each user can determine whether he/she is among the legitimate participants

without performing any decryption.

The underlying encryption scheme must prevent users with the knowledge of

Kgd to determine the value of Kge. This can be achieved using RSA-OAEP [BR94].

In particular, given N = p·q where p and q are safe primes, in our instantiation the

encryption exponent e (only known to organizer) is chosen uniformly at random

from all the values 1 < e < φ(N) such that e is co-prime with respect to φ(N).

Unfortunately, this does not allow us to adopt some of the common optimization

related to RSA [JK03]. It is not possible to select an exponent e with low ham-

ming weight, since participants would be able to determine its value based on the

knowledge of N .

5.3.2.2 Application data encryption

Usually the application data, such as voice data in a conference call or files in a

shared folder, is much higher in volume compared to participants control data.

Moreover, while there is only one organizer for each group, there are likely multiple
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/ndn/broadcast/conference/lunch-talk/participants-control
Hash 1 Hash 2 Hash 3 Hash N...

Kgd encrypted with User 1's public key
Kgd encrypted with User 2's public key

...
Kgd encrypted with User N's public key

Organizer's signature

Figure 5.19: An example of participants control data

data producers; in many distributed applications all users produce data at some

time. Therefore the asymmetric encryption approach used in securing participants

control becomes infeasible for securing the actual application data, mainly due to

two reasons. First, according to the protocol above, each data producer has to

generate a key pair (Kpe, Kpd) and distribute Kpd to all other participants. This

requires each producer to have complete knowledge of the other participants in

the group, which may not be the case. Besides, letting each producer distribute

a private key also incurs significant overhead. Second, asymmetric encryption

imposes higher computation overhead compared to symmetric encryption. Doing

asymmetric encryption for each Data packet raises concerns about the computa-

tion overhead, especially on devices with limited resources (e.g. smart phones,

tablets).

Based on the above consideration, we propose to use symmetric keys for appli-

cation data encryption. Organizer establishes the key for application data, which

is encrypted using Kge, and participants obtain and use the same key to decrypt

data from others and to encrypt their own packets.
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5.3.2.3 Key revocation

Key revocations can be used to force selected participants to leave a group in

distributed applications. All participants in a group should keep an outstanding

Interest for new participant control data and the organizer can generate such a

Data packet at any time for the key revocation. All the users that are still eligible

for participating will fetch the updated keys immediately.

In order to distribute a new asymmetric key pair for a conference, organizer

uses the current Kge to encrypt the participants control data, which indicates the

asymmetric key revocation and includes an new key K ′
gd, encrypted using eligible

users’ public keys. Kge is used to encrypt the data so that the participants are

assured that the key revocation is legitimate, as the conference organizer is the

only one who knows Kge. The recipients then check whether they are still allowed

to participate and, if they are, successfully decrypt K ′
gd.

To issue a new symmetric key, which supersedes the current one, organizer

simply distribute the new key encrypted with Kge.

5.4 ChronoShare: a ChronoSync-based File Sharing Ap-

plication

To validate that the new design patterns can support complicated distributed ap-

plications, in this section we describe the design and implementation of Chrono-

Share, a distributed secure file sharing application based on ChronoSync. There

are quite a few products providing similar services, like Dropbox, SparkleShare,

Google Drive, SkyDrive, Bittorrent Sync, etc. [Dro, Spa, Gooa, Sky, Bitb], due

to a tremendous demand for file sharing among multiple personal devices and

among people who work on the same project. Unlike most other products which

are based on centralized design, ChronoShare is completely distributed, allowing
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Term Definition

Shared folder The folder that contains the files to be shared.

Participant Usually a user account on a device.

Sharing group A group of participants that can access the shared folder.

Organizer The participant that started a sharing group and has the author-

ity on determining who is eligible for accessing the shared folder.

Folder state The state of the set of files in the shared folder, including file

paths, version, owners, timestamps, etc..

Action A change made by a participant to the file state, usually by mod-

ifying a file; for example, updating/deleting a file.

Table 5.2: Terminology for ChronoShare

service to continue working without requiring a particular device to the present.

For the sake of simplicity in writing, we first define the terminology in Ta-

ble 5.2.

5.4.1 From ChronoSync to ChronoShare: the overview

Starting from an initially empty shared folder, the state of the folder is altered

whenever an action from a participant is applied. Thus, the current state of

the folder can be determined by applying all actions from all participants in a

deterministic way to an empty folder.

Participants in ChronoShare name their actions to the shared folder sequen-

tially under their unique name prefixes, and ChronoSync tracks the actions gener-

ated by all participants, and keeps a log about the most recent sequence number

for actions of each participant, as show in Figure 5.20.

Whenever a participant changes the state of the shared folder, the file moni-

toring daemon creates an action according to the change, and ChronoSync ensures
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Figure 5.20: Using ChronoSync to track actions to shared folder

that others in the group immediately learn the participant’s latest sequence num-

ber for action data. Others then fetch the actual action data, which describes in

detail what changes have been make to which file, and apply the same action to

the shared folder on their local file system. We further enforce measures to guar-

antee that participants always apply the same set of actions in the same order to

their local folder, and as a result, they maintain the same set of files in the shared

folder.

Figure 5.21 illustrates the overall picture of ChronoShare’s working mecha-

nism. ChronoSync maintains the digest tree and digest log, from which the pro-

ducer status of action data for each participant is stored. From the digest tree

all the names of the action data from all participants can be inferred. After the

actions are fetched, an “action log” stores all the action data generated by the

participants in a sharing group, and the shared folder on each participant’s local

file system is updated according to the actions in the action log. For example, the

shared folder tree shown in Figure 5.21 is the result of applying the actions in the
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action log to an empty folder.

Version control function is also provided so that users can always checkout

previous versions of files.

5.4.2 ChronoShare design

The detailed design of ChronoShare components is as follows.

5.4.2.1 Action log

The action log keeps record of all the actions applied to the shared folder. An

example of the action log is shown in Table 5.3. Each row describes an action to a

single file. The name uniquely identifies an action, which could be taken directly

from name of the action Data packet. The type field has two values, UPDATE,

which creates a new file or update an existing file, or DELETE, which deletes an

existing file. The filename field indicates the relative file path in the shared folder

on the file system. The version and parent action fields are used in version control

(see Section 5.4.2.3); when a file is created, the action has version number zero

and no parent action; the version number is incremented whenever an action is

applied to the file, and the parent action records the name of the previous action.

The next field is the file data name prefix for NDN Data packets of the segments

of the file associated with the action. The meta field keeps the meta information

of the file on the file system, including timestamps, permission, file size, segments

count, etc..

Actions are only for files9, and each action would produce a new version of

a file. Although this may seem inefficient in the first glance, it aligns well with

the concept of the data immutability in NDN. Furthermore, it simplifies the pro-

9Directory structures information is maintained through the filename, which includes the
path of the enclosing directory for a file. Same as Git [Git], empty directories are treated like
files
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Digest Tree

/zhenkai 2

Shared Folder Tree
/shared

a.jpg /sub

c.jpg

b873... 0644

a.jpg b873... 0755
Name Content hash Permissions

1234... 0644

File properties

Digest Log

Action Log

State hash State tree modification
00a12... <update /alex to seq number 3>

/alex 3

Device name Seq number

Digest Tree node properties

/alex 3

Current hint

/ndn/ucla.edu

/zhenkai 2 /ndn/ucla.edu

...... <update /zhenkai to seq number 2>

...... <update /zhenkai to seq number 1>

…... <update /alex to seq number 2>

...

/akex 3 <update /sub/c.jpg to 1234…  
with 0644>

Key/SeqNo File action

/zhenkai 2 <delete /b.txt>

/zhenkai 1 <update /b.txt to ff01… with 
0644>

…... <update /alex to seq number 1>

/alex 2 <update /b.txt to bba1… with 
chmod 0644>

/alex 1 <update /a.jpg to b873… with 
chmod 0644>

Figure 5.21: The overall picture of ChronoShare’s working mechanism

Name Type Filename Version Parent Action File Data Name Prefix Meta

/alex/action/3 UPDATE /sub/c.jpg 0 NULL /alex/file/b873... ...

/zhenkai/action/2 DELETE /b.txt 2 /zhenkai/action/1 NULL ...

/zhenkai/action/1 UPDATE /b.txt 1 /alex/action/2 /zhenkai/file/ei26... ...

/alex/action/2 UPDATE /b.txt 0 NULL /alex/file/h534... ...

/alex/action/1 UPDATE /a.jpg 0 NULL /alex/file/093a... ...

Table 5.3: An example of the action log
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cessing of the actions in that actions are independent of each other. That is, the

current status of a file can be determined solely by an action, without the need

to taking considerations of the previous or other actions. As a result, as long

as the participants have the same view of the set of actions, they can determine

according to the same rule what is the latest action for each file (and thus the

latest version of file) in the shared folder, and thus maintains the same set of files.

5.4.2.2 Handling local and remote actions

ChronoShare monitors the state of the shared folder by recording in a table the

information about the latest version of the files, which includes both the meta

information about the file on the filesystem and the hash of the file content.

When a user makes changes to the local shared folder, the file system monitoring

daemon notifies the ChronoShare about the file paths that have been changed.

ChronoShare compares the meta data as well as the content hash of the changed

files on the file system with what stored in the folder state table to determine the

action data. If a new file is added or an existing file is updated, it updates the file

state table and publishes an UPDATE action Data packet. Similarly, if a file is

deleted, the file state is updated and a DELETE action Data packet is published.

If the action is an UPDATE, ChronoShare additionally needs to publish a new

version of the file first. Afterwards, the ChronoSync module would immediately

distribute this sequence number to other participants, prompting them to perform

further operations, which is described in the following text.

Whenever the sequence number of another user’s action data increases, Chrono-

Sync triggers the fetching for the missing pieces of action data. If the file state

table is changed after applying the action, and the user wishes to keep the ac-

tual files in the local file system, ChronoShare would fetch and assemble the new

versions of the changed files.
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5.4.2.3 Version control

ChronoShare also provides version control service, and is capable of handling

conflicts about the changes to files.

To have a consistent folder state among participants in a sharing group, all

participants must determine which is the latest action for a file according to the

same rule.

ChronoShare enforces a partial order based on per-file versioning:

• each action for a specific file name receives a monotonically increased version

number

• an action with the larger version number supersedes actions with smaller

version numbers. To break tie when there are more than one actions with the

same version number, “larger” version belongs to an action with numerically

larger user prefix and sequence number.

The order is partial because actions for different files are not related to each

other and cannot be ordered. Whenever conflicts happen, ChronoShare resolves

automatically according to the orders of the conflicting actions For advisory pur-

poses, each action also has a timestamp which indicates time when it was gener-

ated, as well as a pointer to the previous action on the same file. Both parameters

are auxiliary to help users decide which version of the file is more favorable and

are advisory as they only get exposed to a user when the user wants to check the

history versions of a file, and the automatic conflict solving is based on version

number only.

Note that under such a version control scheme, although there is only one

“most recent” version of a file at any time, the history of a file is not linear.

Rather it would have “branches” if multiple users updated a file before they got

a chance to synchronize with each other. Thus users can always check out the
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paper.tex /ted v = 0

paper.tex /ted v = 1

paper.tex /jim v = 2

paper.tex /jim v = 1

paper.tex /tom v = 3

/ted and /jim lose connectivity to each other

/ted and /jim resume connectivity to each other

Figure 5.22: An example of branching of file history

desired version of a file if the automatic conflict resolution is not optimal.

Figure 5.22 shows an example of version control. Ted and Jim independently

updated the paper when they did not have connectivity to each other. After both

of them obtain connectivity, ChronoShare automatically solves the conflict and

picks Jim’s version as the most recent version. This decision is acceptable to the

authors, so the next update action to the file has Jim’s action as the parent.

Later, if the authors think Ted’s version is actually better, they can always

exam the history and check out his version and continue revising the paper based

on that version.

5.4.2.4 Data storage and retrieval

A participant needs to store his own actions and file segments in a storage in

case others send request for them later. Moreover, when receiving actions and file

segments from others, a participant also puts them into the storage so that he
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can serve them on behalf of others when they are not available. To retain data

provenance all the actions and file segments are stored in forms of NDN Data

packets, allowing recipients to follow the trust chain and verify the signatures

carried in the Data packets for the provenance. When an Interest for an action

or a segment of file comes, a participants checks the storage if the corresponding

Data packet exists, and responds to the Interest if the corresponding Data packet

is found. As a file sharing application, ChronoShare also needs to store the latest

versions of the files (the raw bytes) in the shared folder on the file system. This

can be done by retrieving and assembling all segments of a file from the storage.

Normally, an action or file segment can be fetched using their name directly,

which would result in efficient multicast data distribution. Do note that this

does not necessarily require infrastructure support. In fact, if the participants

are within the same wireless broadcast domain, all communications can happen

directly without any assistance from the infrastructure.

To handle the device mobility, ChronoShare uses ChronoSync to propagate

the forwarding hint for a participant that is visiting a foreign network. Other

participants can serve data produced by an offline participant, and thus handling

the device offline problem. Although ChronoShare does not mandate such a device

to be functioning, an always-on device, such as the home server or a server in the

cloud, could greatly help if a large portion of the participants in a group are mobile

and have intermittent connectivity.

5.4.2.5 Access control

ChronoShare uses the encryption based access control described in Section 5.3.

The organizer would collect the public keys of all eligible participants in a

sharing group and disseminate the asymmetric decryption key Kgd securely to

them while retaining the asymmetric encryption key Kge to himself. A symmetric
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key (such as an AES 256-bit key) is then distributed after being encrypted by

Kge. Only the eligible participant will be able to get the symmetric key and both

the action data and the file data are encrypted using the symmetric key. The

organizer should periodically change the symmetric key and use new asymmetric

key pair if some participants are no long eligible to access the shared folder.

5.4.3 Implementation

We implemented ChronoShare in Mac OS X and Ubuntu with user interface sim-

ilar to those provided by commercial counterparts (such as Dropbox). We use

database to store NDN packets, and assembles the latest version of files to the

shared-folder (but there is ongoing research to use Fuse [Fus] to eliminate the

duplication storage). We use NDN-JS [STC13] based web interface for history

browsing and version checkout. Additionally, WiFi ad-hoc communication is also

supported.

5.5 Discussions

In this section we discuss the remaining issues with our exploration of the new

design patterns.

5.5.1 Broadcast Interest in large networks

Without mandating a central node, ChronoSync relies on the broadcast sync

Interests to efficiently exchange state digests. However, it is unrealistic to assume

that sync Interests could be broadcasted to the parties scattered in large networks,

such as the Internet. A possible solution is to build an overlay broadcast network.

As shown in Figure 5.23, each network with users of ChronoSync-based distributed

applications sets up a gateway node, which knows how to forward sync Interests to
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Figure 5.23: Overlay broadcast network for ChronoSync

other overlay gateways10. The issue of how gateways learn each other’s presence is

out of scope for this paper. A gateway node relays the sync Interests received from

its local network to gateways in other networks. Vice versa, the sync Interests

received from other gateway nodes would also be broadcasted in the local network.

As a result, the broadcast of sync Interests is confined to networks where such

Interests are desired to be received.

Another way to proceed is to ask the gateway routers to announce a broadcast

name prefix through routing, which remotely resembles Multicast OSPF [Moy94].

It works in a similar fashion as the overlay approach, but there is not need for

special handling in order to relay Interests among gateways. The concern of this

approach is that it increases the routing instability.

5.6 Related Work

There is an extensive amount of research to bring multicast functionality, and in

particular reliable multicast functionality [FJL97, LGT98, PSL97] to the Inter-

10This could be achieve either through tunneling or with forwarding hint.
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net. NDN architecture, based on which ChronoSync is designed, natively solves

the multicasting problem, but requires applications to be implemented using a

pull-based data delivery model, i.e., users need to explicitly request for data.

ChronoSync protocol gives an opportunity for distributed applications to effi-

ciently discover names for dynamically generated data.

To some extent, the design of ChronoSync protocol was inspired by the CCNx

Synchronization protocol (ccnx-sync): the protocol to facilitate automatic syn-

chronization of data collections in CCNx repositories [Pro]. However, Chrono-

Sync and ccnx-sync are completely different protocols with different objectives—

synchronizing knowledge about the data collections versus synchronizing the data

collection itself.

The key building block of ChronoSync design—a compact representation of the

knowledge about the whole dataset as a hash value—is based on concept of Merkle

trees (hash tree) [Mer]. 11 The Merkle tree is widely used in many different areas,

including file systems to verify/maintain integrity of the data on disk [ZRA10],

anti-entropy mechanism in distributed key/value stores [G 07], and many others.

Another component of ChronoSync design (reconciliation of knowledge about

the date collection) is closely related to numerous research efforts that aim to

efficiently discover differences in files, folders, and databases: RSYNC [TM96,

AST02], CDC in LBFS [MCM01], TAPER [JDT05] to name a few. However, in

most cases, the nature of distributed applications for which ChronoSync was de-

signed allows efficient difference discovery without resorting to any complex state

reconciliation procedures. For applications where the probability of simultane-

ously data generation is not negligible, ChronoSync supports the use of exclude

filter to better handle such cases. If the use of exclude filter is not desirable,

ChronoSync allows the use of any of the existing or new promising algorithms,

11While the current design uses a very simplistic form of hash tree, it can be generalized to a
more canonical form of the Merkle trees.
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for example the algorithm crafted by Eppstein et al. [EGU11], in addition to the

simple state reconciliation approach described in Section 5.2.6.

There is also a rich literature of peer-to-peer solutions [AS04]. In general

these solutions are designed to run over today’s TCP/IP network and build an

application level overlay to interconnect peers. Such an overlay can be subject

to frequent changes as users join and leave, and are unaware of the underlying

network topological connectivity. Even though some solutions offer application

level multicast data delivery, the resulting data distributions tend to be inefficient

due to the mismatch between the overlay and the underlay network topology.
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CHAPTER 6

Conclusion

With the number of mobile devices growing by leaps and bounds, the Internet is

becoming mobile. Meanwhile, the popular applications, such as Youtube, Drop-

box, Google Doc, have dramatically transformed the communication patterns in

the Internet, making it increasingly limiting and difficult to conform to IP’s point-

to-point communication model. NDN is a proposed future Internet architecture

that is better suited to modern networks and aims to accommodate emerging

communication patterns. However, there has been no systematic effort on pro-

viding essential building blocks, which fully exploit the benefits brought by NDN,

to support distributed applications in a new era of mobile Internet. This thesis

represents an important step towards addressing these challenging problems.

Recognizing the limitations of the existing IP mobility solutions, we approach

the problem of mobility support from a new and different angle. Traditional IP

mobility support suffers from various shortcomings as a result of TCP/IP’s host-

centric communication and addressing model, which does not fit the dynamic mo-

bile networking environment and fails to accommodate emerging communication

patterns. NDN, on the other hand, greatly simplifies the design for mobility sup-

port as it replaces IP’s point-to-point communication model with receiver driven

data delivery based on application-specified names. As a result, mobile nodes

are no longer mandated to acquire IP addresses, which keep changing during the

movement, and requests for data can be issued as long as there is connectivity

without the hassle of host address assignment. Also, it enables mobile nodes to
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communicate based on what data they need, instead of maintaining a dynamic

path to a single node. Thus, mobile nodes can efficiently use broadcast wireless

media and seamlessly use multiple interfaces. Moreover, each piece of data in

NDN is named and signed, and hence can be cached by any node, greatly enhanc-

ing data delivery in dynamic environment and providing intrinsic data security

that is no longer dependent on locations. With such features, NDN architecture

naturally embraces delay-tolerant and ad hoc networks, allowing applications to

operate using the same communication model regardless of the types of the net-

works. NDN faces similar problems as those in IP mobility support for mobile

producers, because the scaling problem of routing table size still exists despite

that NDN routes on names. The invaluable lessons learned from IP mobility sup-

port research can be applied to solve the problem, and NDN’s flexible strategies

allow consumers to devise best approaches to increase the chance of successful

data fetching from mobile providers.

Although NDN architecture frees applications from the constraints imposed

by IP’s point-to-point communication model, it is still challenging to design dis-

tributed applications that best take advantage of NDN. To lower the hurdle of

distributed applications development, we presented ChronoSync, a dataset syn-

chronization protocol for distributed applications running over NDN networks.

Leveraging on NDN’s interest-data packet exchanges for fetching named data,

ChronoSync effectively names the state of a dataset by its digest at a given time.

Carrying the name of the dataset state, each sync interest is broadcasted to all

participants in a synchronization group to solicit “data” that reports changes in

the dataset. The design takes a completely distributed approach, and the result-

ing ChronoSync protocol removes both single point of failure and traffic concen-

tration problems commonly associated with centralized designs. Observing the

limitations of conventional security approaches that secure communication chan-

nels and heavily rely on centralized controllers, we also proposed a decentralized
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and data-centric security design that is better suited to the distributed nature of

applications.

Looking forward, there are many opportunities to build upon the basic frame-

work of supporting mobile and distributed applications laid out in this thesis.

First, while we have assessed the overall picture of mobility support in NDN,

there is still a need to further identify and develop strategies to serve different

kinds of application requirements. For example, both vehicular networking and

wireless health monitoring are a good fit to apply the NDN mobility support

approach; yet, the requirements for the former emphasize on economical factors

(e.g. always use the interface with lower cost), while the latter requires more

considerations on energy consumption and privacy issues.

Second, applying ChronoSync to develop a wide range of distributed appli-

cations is the best way to access its capability and to identify what needs to be

improved. The initial ChronoSync design emerged during our effort of developing

a chatroom application to run over NDN. Since then we have also used Chrono-

Sync in developing different applications, such as ChronoShare. We see potential

of ChronoSync in supporting a variety of applications. For example, multi-party

audio conferencing can leverage ChronoSync to propagate the speaker information

and instruct listeners to fetch the audio streams from active speakers; resource

discovery applications such as zero configuration networking can be significantly

simplified if built on top of ChronoSync.

Third, given the heterogeneous nature of application requirements, this work

may not provide all the solutions needed to solve the problems encountered in

developing distributed applications in the wild. We hope that this work can help

stimulate more discussions on the design space of distributed applications over

NDN and identifying and implementing more useful building blocks.

Lastly, we have not covered analytic proof of correctness about the ChronoSync
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approach. Although we have conducted extensive empirical verification of the

correctness of ChronoSync both in simulations and in the NDN testbed, a sound

analytic proof could provide better assurance to developers that intend to use

ChronoSync for their critical services.
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